

Working with Fixatives, Fixation, and Tissue Processing to Improve Morphology and RNA Quality

Melissa L. Cox, Ph.D.

Postdoctoral Fellow

Pfizer Global Research and Development,

Ann Arbor

Morphology and RNA Quality

Goal

 Optimize tissue morphology, RNA integrity, and RNA utility

Problem

- Goals often seem mutually exclusive
 - Well fixed sample (formalin) = compromised RNA
 - Good RNA (OCT) = poor morphology

Experimental Design

- Test tissue: rat liver
- 9 fixatives
- Fixation and processing methods:
 - Microwave and standard
- Assessment:
 - Morphology: subjective by a pathologist
- RNA quality:
 - Agilent Bioanalyzer
 - LCM (laser capture microdissection)
 - qRT-PCR (Taqman quantitative RT-PCR)
 - Microarray analysis

Fixatives

- Aldehyde-based
 - 10% NBF
 - modified Davidson's II
- Alcohol-based
 - 70% Ethanol
 - Modified Carnoy's (no chloroform)
 - Modified Methacarn (8 methanol: 1 glacial acetic acid)
 - Universal Molecular Fixative (UMFIX)
- Picrate
 - Bouin's
- Holding Solution
 - 30% Sucrose
 - PBS

Flow Chart of Sample Handling and Evaluation

Rat Liver (40X)

Morphology Results

- Grading scheme:
 - Nuclear, cytoplasmic, and cell membrane detail
- Top score:
 - Modified methacarn
- Next best:
 - 70% ethanol, 10% NBF, modified Carnoy's
- Microwave fixation and processing:
 - Moderately improved morphology for most fixatives
- Optimization required for microwave methods
 - Avoid "cooking" of tissues

RNA Quality Assay: Agilent Bioanalyzer

Ladder: 0.2, 0.5, 1, 2, 4, 6 kb

Control: Rat liver total RNA (Ambion)

Category 1 OCT

Category 2 Modified methacarn UMFIX

Category 3
70% ethanol
Modified Carnoy's
PBS (microwave fixation)

Category 4 30% sucrose

Category 5 10% NBF Modified Davidson's II PBS (standard fixation)

Conclusions for RNA Integrity

- Most important factor: The Fixative
- Best RNA quality:
 - Modified methacarn
 - UMFIX
- Microwave methods are irrelevant to RNA quality

Practical Application: Taqman qRT-PCR

Cycle number:

Point where slope crosses the line

Fewer cycles:

 More robust amplification, better mRNA integrity

Taqman qRT-PCR

Average Ct of each fixativederived RNA above the control mean for three specific transcripts

Fixative	Average Ct above the control		
Modified methacarn		7	
UMFIX		10	
10% NBF		12	
70% Ethanol		12	

- 18S rRNA
- PPIA (peptidylprolyl isomerase A / cyclophilin A)
- HPRT (hypoxanthine guanine phosphoribosyl transferase)

Microarray analysis

Goal:

- Assess the concordance of RNA isolated from fixed tissues to that isolated from snap frozen tissue
- Assess changes in fixed RNA over time
- Microarray system:
 - GE Amersham CodeLink Rat Whole Genome Bioarray
 - 34,000 gene targets
 - Uses oligo(dT) primers
 - 30mer probes

Probe Design Distance from 3' end of Transcripts

GE Amersham Codelink

Fragmented cRNA Assessment: Agilent Bioanalyzer Profile

- Chemical fragmentation is random
- cRNA: 25-200 bases in length

Array-to-array Signal Intensity Reproducibility

GE Amersham Codelink Array-to-Array Comparison

- All genes are depicted as dots
- Shape of plot is evaluated
 - Scatter plot should look like a "rocket"
 - "Skew" = genes that appear to be differentially regulated
- What is an acceptable "background" level?
 - Snap frozen vs. OCT

Signal Intensity Reproducibility

Snap Frozen vs. OCT

- All probes shown
- Red lines show 3-fold boundary
- Some deviation of OCT from snap frozen is expected, due to a longer freezing time and cryosectioning

Snap Frozen vs. Modified Methacarn

Snap Frozen vs. 10% NBF

Scatter plots

 Modified methacarn has a scatter plot similar to that of OCT

 10% formalin is very skewed and has very little similarity to snap frozen

Definitions

- Overlap
 - genes detected in both samples
- "Missing"
 - genes detected in the control sample that are not in the experimental
- "Extra"
 - genes detected in the experimental sample that are not in the control
- Corrected Error Rate (CER)
 - "false positives" overlapping transcripts that would be considered differentially expressed (3fold or more)

Snap Frozen vs. OCT

Snap Frozen vs. Modified Methacarn

Snap Frozen vs. OCT

Snap Frozen vs. 10% NBF

Summary: Snap Frozen vs. Fixed Samples

Snap frozen vs.	Overlap	CER
ОСТ	82.4%	0%
Modified methacarn	66.2%	0%
10% NBF	11.1%	19.5%

- Acceptable background: the difference between snap frozen and OCT
- Modified methacarn contains 66% of the transcripts found in snap frozen; the false positive rate is negligible.
- 10% NBF contains 11% of the transcripts found in snap frozen; nearly 20% of those are false positives

Does RNA in Fixed Tissues Degrade Further Over Time?

Modified Methacarn vs. Aged Modified Methacarn

10% NBF vs. Aged 10% NBF

Snap frozen vs. Modified Methacarn

Modified Methacarn vs. Aged Modified Methacarn

Snap Frozen vs. 10% NBF

10% NBF vs. Aged 10% NBF

Summary: Changes in Fixatives in One Year

Comparison	Overlap	CER
Modified methacarn vs. Aged Modified methacarn	81.4%	2.69%
10% NBF vs. Aged 10% NBF	58.8%	0%*

^{*} Only had 1922 overlapping probes

- The change in modified methacarn over time is similar to the "background" difference between snap frozen and OCT.
- 10% NBF changes somewhat over time, but there are very few transcripts detected at either time point

Implications

- The 28S:18S rRNA profile should not be the sole determinant of RNA quality
 - It does not necessarily predict RNA utility
 - It does not predict how well the RNA can be modified by enzymes (eg., reverse transcriptase)
- Very fragmented RNA can yield small amplicons for qRT-PCR
- New definition for RNA quality
 - How it looks AND how it performs

Conclusions

- Determine what quality of RNA is fit for your purpose
 - Most fixatives yield RNA useable for qRT-PCR
 - Archival samples: 10% NBF may work for qRT-PCR, but only extremely abundant transcripts would be detected on microarrays
- Samples preserved in different fixatives cannot be compared quantitatively

Acknowledgements

Carrie Schray Joseph Paulauskis

Chandra Luster Peter Korytko

Zachary Stewart Nasir Khan

Susan Eddy Leslie Obert

Maggi Kennel Robert Dunstan