Real-Time Quantitative PCR Assay Data Analysis, Evaluation and Optimization

A Tutorial
on
Quantification Assay Analysis and Evaluation and
Trouble-Shooting Sub-Optimal Real-Time QPCR Experiments
by
Rainer B. Lanz, M.S., Ph.D.
February 20. 2009

Content IV: A\&E Class

- Introduction:
- Real-time QPCR \& Amplification Efficiency,
- Mathematics of QPCR
- Data Analysis and Evaluation:
- Quantification Strategies in QPCR
- Absolute Quantification
- Relative Quantification:

Standard curve method
Comparative CT method

- Fidelity in QPCR
- Specificity, Sensitivity, Accuracy, Reproducibility
- Experimental Variations, Replicates,
- Standard Deviation Calculations
- Optimizing QPCR experiments
- Primer and probe optimization
- Multiplex assay optimization

Essentials - One More Time

- Target Reporter Fluorescence...
- is determined from the fractional cycle at which a threshold amount of amplicon DNA is reached:
- $R_{C T}=R_{0} \cdot\left(1+E_{T}\right)^{C T}$
- Amplification Efficiency (@ threshold T): $E_{T}=10^{(-1 / s)}-1$
- slope (s) of linear regression of C_{T} values vs. $\log [c D N A]$
- Fluorescence increase I is proportional to the amount of target DNA: $I=k \cdot R_{C T}$

Rainer B. Lanz, M.S., Ph.D.

Mathematics of QPCR

- Basic Equations:

- $R_{C T}=R_{0} \cdot\left(1+E_{T}\right)^{C T}$
- Taking the logarithm yields: $\log \left(R_{C T}\right)=\log \left(R_{0}\right)+\log (1+E) \cdot C_{T}$
- rearrangement: $C_{T}=\log \left(R_{C T}\right) / \log (1+E)-\log \left(R_{0}\right) / \log (1+E)$, or:

$$
C_{T}=-1 / \log (1+E) \cdot \log \left(R_{0}\right)+\log \left(R_{C T}\right) / \log (1+E)
$$

- Comparison with $y=s x+b$ indicates that plotting C_{T} versus $\log \left(R_{0}\right)$ produces a line with the slope s, therefore:
$s=-1 / \log (1+E)$, or: $\log (1+E)=-1 / s$
- Solving the logarithm then yields the amplification efficiency:

```
1+E = 10-1/s,E = 10(-1/s)-1
[for E=1:2 = 10-1/s}\mathrm{ , or log2 =-1/s, or: s=-1/log2 = -3.32]
```

- Because we aim at obtaining the initial numbers of target molecules, it is appropriate to now substitute reporter fluorescence R with numbers N :

$$
\text { - } N_{0}=N_{C T} /(1+E)^{C T}(I) \text { and } I=k N_{C T}
$$

Quantification Strategies in QPCR

- Absolute Quantification
- Absolute Standard Curve Method > requires standards of known quantities
- STND $_{1 / 2 / . / 66}$ UNKN, NTC
- Relative Quantification

A comparative method: requires a reference, which is also a target ($2^{\text {nd }}$ amlicon), = active reference.

- Relative Standard Curve Method: relative target quantity in relation to standard curves of standard and reference
- STND $_{1,2}, \ldots, 6$, REF $_{1,2}, \ldots, 6$, UNKN, NTC
- Comparative C_{T} Method ($\Delta \Delta C_{T}$): relative target quantity in relation to a endogenous control only (no standards)
- REF, UNKN, NTC

Absolute Quantification: AQ

- A Calibration Curve Method
- Known amounts of external targets are amplified in a parallel group of reactions run under identical conditions to that of the unknown samples.
- Standards: recRNA, recDNA, gDNA
- The absolute quantities of the standards must first be determined by some other independent means.
- SDS determines N_{0} for each Unknown based on linear regression calculations of the standards.

- quantitative accuracy $=f($ standards, RT, standard curve)

Relative Quantification: RQ

- An Active Reference
- ...is used to determine changes in the amount of a given sample relative to another -internal - control sample.
- a different amplicon in the same PCR reaction as the amplification of the amplicon for the GOI
- Does not require standards with known concentrations Calculation Methods for Relative Quantitations
- Standard Curve method (ΔC_{T})
- Two 'standard' curves (relative control \& GOI)
- May include a $2^{\text {nd }}$ normalization with an arbitrarily chosen calibrator
- Comparative C_{T} method ($\Delta \Delta C_{T}$)
- no standards, but with amplification of a reference
- contingent upon similar amplification efficiencies of the amplicons for GOI and reference
- Always relative to a calibrator sample

RQ: Intuitively

- $\Delta C_{T}=$ const because $E=$ const (note: $E_{A} \neq E_{b}$ is allowed)

- Same amplicon:
- $E_{A}=E_{B} \Rightarrow N_{A} / N_{B}=2^{-\Delta C T}$

For example: if ΔC_{T} between A and B is 5 cycles, then there is $2^{-5}=1 / 32$ as much A than B.

- Different amplicons:

For example: GOI (x) and endogenous control (c):

- $E_{x} \neq E_{c} \Rightarrow N_{x} / N_{c}=K\left(1+E_{c}\right)^{c T c} /\left(1+E_{x}\right)^{c T x}$

RQ: Mathematically

- $N_{C T}=N_{0}(1+E)^{C T}$ and $I=k N_{C T}$
- The relative Intensities of samples A and B is:
- $I_{A}=k_{A} \cdot N_{C T A}=k_{A} \cdot N_{O A}\left(1+E_{A}\right){ }^{C T A}$ and
- $I_{B}=k_{B} \cdot N_{C T B}=k_{B} \cdot N_{O B}\left(1+E_{B}\right)$ CTB
- at threshold: $I_{A}=I_{B}$ thus: $k_{A} \cdot N_{C T A}=k_{B} \cdot N_{C T B}$
- Solving for constants yields: $K=k_{B} / k_{A}=N_{C T A} / N_{C T B}$,
- inserting $N_{C T A}=N_{O A}\left(1+E_{A}\right)^{C T A}$ and $N_{C T B}=N_{O B}\left(1+E_{B}\right)^{C T B}$ and rearranging we get:
$-N_{O A} / N_{O B}=K \cdot\left(1+E_{B}\right)^{C T B} /\left(1+E_{A}\right)^{C T A}$
- The fractions of A and B expressed as percentages are:

$$
\begin{align*}
& A=100 \cdot\left[K \cdot\left(1+E_{B}\right)^{C T B} /\left(1+E_{A}\right)^{C T A}\right] / 1+K \cdot\left[\left(1+E_{B}\right)^{C T B} /\left(1+E_{A}\right)^{C T A}\right] \tag{II}\\
& B=100 \cdot[1] / 1+K \cdot\left[\left(1+E_{B}\right)^{C T B} /\left(1+E_{A}\right)^{C T A}\right]
\end{align*}
$$

- Relative Standards:
- For example: the ratio of treatment (\dagger) vs. control (c):

$$
\frac{\left(N_{A} / N_{B}\right)_{+}}{\left(N_{A} / N_{B}\right)_{c}}=K \frac{\left(1+E_{B+}\right)^{C T B+} /\left(1+E_{A+}\right)^{C T A t}}{\left(1+E_{B C}\right)^{C T B C} /\left(1+E_{A C}\right)^{C T A C}}
$$

Relative Standard Method, Example A

- Two serial dilutions: one for GOI (c-myc), another one for the endogenous control (GAPDH)
- Expression profiling in brain, kidney, liver, lung

RQ: Data Munching in Excel

- Average replicates, then divide the average c-myc (GOI) value by the average GAPDH reference value of the corresponding samples.
- For example: Table 1. Amounts of c-myc and GAPDH in Human Brain, Kidney, Liver, and Lung

... continued

- Relative Quantification with Absolute Values: involves the division by a calibrator value:
- normalize using an endogenous control, then
- divide the normalized values by an arbitrarily chosen calibrator value (e.g. kidney in this example)

	GOI raw	$18 S$ raw	Normalized GOI/18S	Relative Value
kidney	82	3592	0.023	1.0
liver	18351	8996	2.05	90
ovary	44	1669	0.03	1.3
spleen	1	8	0.13	5.6

- Quality of quantification using the relative standard curve method:
- quantitative accuracy = f(standard curve)
- More accurate than the absolute standard method

Relative Standard Method, Example B

- e.g. c-myc Expression Analysis in Liver, Kidney Tissues
- GOI is c-myc, endogenous control is GAPDH,
- reference sample is RNA isolated from lung tissue
- 2 Standard curves: serial dilutions of a cDNA sample generated from lung tissue tRNA - one series is analyzed for c-myc, the other for GAPDH.

Liver $_{\text {GAPDH }}$
Kidney $_{c-\text { myc }}$ Kidney $_{\text {GAPDH }}$

From: Applied Biosystems Documentation PN 4376785 Rev D

SDSv2 Does the Analysis For You

Amplification Plot－Civs Well Number \vee
\oplus ↔ 日跼気決
Amplifieation Plot

Gene Expression Plot

Rainer B．Lanz，．．．．．．．．．．．．

Relative Standard Method, Example C

- Relative to endogenous control AND treatment(s)
- For example: +/- TNFa induced TNFAIP 3 and GAPDH
$\frac{\left(N_{A} / N_{B}\right)_{+}}{\left(N_{A} / N_{B}\right)_{c}}=$
$K \frac{\left(1+E_{B+}\right)^{C T B+} /\left(1+E_{A+}\right)^{C T A+}}{\left(1+E_{B C}\right)^{C T B C} /\left(1+E_{A C}\right)^{C T A C}}$

TNFa untreated: $\mathrm{C}_{\mathrm{t}}($ TNFAIP3 $)=24.25 \quad \mathrm{C}_{\mathrm{t}}($ GAPD $)=16.49$
TNFa treated: $\quad \mathrm{C}_{\mathrm{t}}($ TNFAIP3 $)=19.17 \quad \mathrm{C}_{\mathrm{t}}($ GAPD $)=16.36$

$$
\frac{(\text { TNFAIP3/GAPD })_{\text {treated. }}}{(\text { TNFAIP3/GAPD })_{\text {nntreated }}}=\frac{0.17 / 0.14}{0.0048 / 0.13}=\mathbf{3 2 . 9}
$$

The Comparative C_{T} Method

- Derivation of the $\Delta \Delta C_{T}$ Method
- Targets at threshold cycle $C_{T}: \Rightarrow N_{C T}=N_{0} \cdot(1+E)^{C T}$
- For X_{T} : number of target GOI molecules at threshold
- and R_{T} : number of reference molecules at threshold
- $X_{T} / R_{T}=X_{0} \cdot\left(1+E_{x}\right)^{C T X} / R_{0} \cdot\left(1+E_{R}\right)^{C T R}=K_{x} / K_{R}=K$
- If $E_{X} \approx E_{R}=: E \Rightarrow K=X_{0} / R_{0} \cdot(1+E)^{C T X-C T R}=X_{N} \cdot(1+E)^{\Delta C T}$

Whereby $\Delta C_{T}=C T_{X}-C T_{R}$, and $X_{N}=X_{0} / R_{0}$
Rearranged: $X_{N}=K /(1+E)^{\Delta C T}$, or $X_{N}=K \cdot(1+E)-\Delta C T$ (III)

- Another normalization of each normalized sample X_{N} by the X_{N} of a calibrator (cb) yields:

$$
X_{N} / X_{N, c b}=K(1+E)^{-\Delta C T} / K(1+E)^{-\Delta C T, c b}=(1+E)^{-\Delta \Delta C T}
$$

- $E=$ const., and with $N=X_{N} / X_{N, c b}: N=2-\triangle \Delta C T$ (IV)
- Quality of quantification:
- quantitative accuracy = f(amplification efficiency)
- Accurate and most efficient QPCR data analysis method.
- (don't use the $\triangle \triangle C T$ method if $C V>4 \%$, see later)

$\Delta \Delta C_{T}$ Method continued

- SDS v2 does it for you! Otherwise, use Excel
- Normalize GOI signals to signals of an endogenous reference (e.g. 18S): $C T_{\text {GOI }}-C T_{185} \Rightarrow \Delta C T_{r}$
- Normalize each $\Delta C T_{r}$ value to a particular $\Delta C T_{c}$ value of an assay calibrator (cb): $\Delta C T_{r}-\$ \Delta C T_{c b} \$ \Rightarrow \Delta \Delta C T_{r}$ and one $\Delta \triangle C T_{c b}$.
- This is a second subtraction, and $\triangle \triangle C T_{c b}=0$
- Calibrator cb may be a control treatment, or the sample with the highest $\Delta C_{T} r$ value
- The relative target number N then is $2-\triangle \triangle C T$

	GOI $C T$	$18 S$ $C T$	Norm. I $\triangle C T$	Norm. II $\triangle \triangle C T$	N
E	24	14	10	-1	2
P	20	11	9	-2	4
E+P	21	11	10	-1	2
DMSO	27	16	11	0	1

Comparative C_{T} Method $\left(\Delta \Delta C_{T}\right)$ Example B

－e．g．p53 Expression in Liver，Kidney，Brain Tissues
－GOI is TP53，endogenous control is GAPDH
－Assumption：similar amplification efficiencies $\left(E_{\text {TP53 }}=E_{\text {GAPDH }}\right)$ （ $\Delta \Delta C_{T}$ validation experiment，see later）

0 show in Wells v			Proview Legend								䢞	$\frac{\text { 戍 }{ }^{\text {c }} \text {｜}}{12}$	
	1	2	3	4	5	6	7	8	9	10	11		
A	回．myc	Nomye	Namye	（ ${ }^{\text {ȧpoh }}$	匃 ${ }^{\text {appoh }}$	$\underbrace{}_{\text {afpoh }}$	$\square^{\text {Liver }}$	$\square^{\text {Liver }}$	[1iver		$\mathbf{\square}_{\text {SAPDH }}^{\text {Liver }}$		
в	$\begin{array}{r} \text { Kidney } \\ \square \\ \text { comye } \end{array}$	$\square_{\text {c-myo }}^{\text {Kidnoy }}$	$\begin{array}{r} \text { Kidney } \\ \text { o-mye } \end{array}$	$\begin{gathered} \text { Kidney } \\ \square \text { GAPDH } \end{gathered}$	$\begin{gathered} \text { Kidney } \\ 0^{\text {GAPDH }} \end{gathered}$	$\begin{gathered} \text { Kidney } \\ \square \text { GAPDH } \end{gathered}$	$\frac{\mathbf{S}_{20} \mathrm{cmpo}}{}$	$\frac{\text { Sla.myo }}{200}$	$\frac{\text { Slomye }}{200}$	$\frac{\text { So myo }}{20}$	$\frac{\mathrm{S}_{20}}{20} \text {.mpo }$	$\frac{S_{1}}{20} \mathrm{~cm}$	
c	$\frac{\text { Sl }}{2} \mathrm{mpo}$	$\frac{\text { S }}{2}$	$\mathbb{S}_{2} \text { a.mpe }$	$\mathbb{S}_{0.2} \mathrm{c} \cdot \mathrm{mpe}$	$\frac{\text { Sa c.mpo }}{0.2}$	$\frac{\text { Slo.mye }}{0.2}$	$\frac{\text { So.mpo }}{0.02}$	$\begin{aligned} & \text { Socmye } \\ & 0.02 \end{aligned}$	$\begin{aligned} & \text { S o.myc } \\ & 0.02 \end{aligned}$	$\underset{200}{\text { SaPDH }}$	$\underbrace{\text { SAPOH }}_{200}$	$\frac{S_{200}}{} \text { oal }$	
D	$\int_{20}^{\text {SAPDH }}$	$\underbrace{\text { GAPDH }}_{20}$	$\mathrm{S}_{20} \text { GAPDH }$	$\frac{S}{2}^{\text {GAPDH }}$	$\frac{S_{2}}{} \text { GAPDH }$	$\frac{S}{2}_{\text {GAPDH }}$	$\int_{0.2} \text { GAPDH }$	$\int_{0.2}^{\text {GAPDH }}$	$S_{0.2}^{\text {GAPDH }}$	$\begin{aligned} & \text { S GAPDH } \\ & 0.02 \end{aligned}$	$\$_{0.02} \text { GAPDH }$	$\mathrm{S}_{0.02}$	

From：Applied Biosystems Documentation PN 4376785 Rev D

SDSv2 Does the Analysis For You

Cene Exprossion

Plot Type：ROvs Sample \sim Graph Type：Log10 \sim Orientation：Vefical Bars \sim

RQ vs Sample

View Plate Layout View Well Table																																										
					Seleet Wells With：－Selectitem－\sim－Stleethem－																																					
											國 Eppand All		匿 Collapse All																													
＊	Well	Omit	Flag	Sample．	Target N.	Task	Dyes	cr	CrMean	crso	ΔC		Mean	$\triangle C T S E$																												
－Bram－GAPLH－23386133																																										
B Brain－GAPDH－2332385																																										
							FAM－NFO．	－ 30.856344	30.912079				7.484	0.																												
Q Bran－TP53－30．93019																																										
	5 C5	\square		Brain	TP53	UnkNOWN	FAMMFO－	－ 30.93019	30.912079				7.484	0																												
E Brain－TP53－ 30949701 （ ${ }^{\text {a }}$																																										
	$6 \mathrm{Ca}_{6}$	\square		Brain	TP53	Unkwown	FAMENFO．	－ 30.949701	30.912079				7.484	0																												
B GAPLH．Undetemmined																																										
	$7{ }^{7} 4$	口			OAPDH		FAM－NFO．	Undetermi．																																		
	8 AS	\square			OAPDH	NTC	FAMANFO－	Undetermi．																																		
	Q Kidery．GAPDH． 24.832582 N																																									
B Kidney－GAPLH－ 24.949886																																										
	¢		\ldots											，																												

$\Delta \Delta C_{T}$ Method, Example C

- siRNA Transfection
- Quantitation of \% Knock-down and remaining gene expression:

Sample	Amplicon	CT	$\triangle \mathrm{CT}$	AACT
SiRNA	Primer/Probe		CT(COI) -	$\triangle \mathrm{CT}(\mathrm{COI})-$
Target	Target	CT	CI(control)	$\triangle C T(N C)$
GOI	GOI	26.98	15.23	4.89
GOI	18S rRNA	11.75		
NC	GOI	22.87	10.34	
NC	18 S rRNA	12.53		
Percent remaining gene expression: Percent knockdown:			$2 \exp -\Delta \Delta C T$	$2^{-4.89}=3.37 \%$
			100-3.37\%	96.63\%

Validation Experiment

- $\Delta \Delta C_{T}$ Method is contingent upon $E_{G O I} \approx E_{\text {Ref }}$
- The absolute value $(|s|)$ of the slope s of \log input amount (or dilutions) vs. ΔC_{T} should be less than 0.1
E_{x} vs. E_{R}
Efficiencies:
$|s|<0.1$

E max.
amplification efficiency:

- Comparing important linear regression plots for QPCR:

What If $E_{G O I} \neq E_{\text {ref }}$?

- Use Efficiency Correction
- Note: Rainer does NOT recommend this method of QPCR data analysis (if you had followed all the recommendations thus far, you most likely would not have this problem now)

$$
\text { Relative } \begin{aligned}
N & =\frac{\left(E_{x}\right)^{\Delta C T_{x(\text { control-sample })}}}{\left(E_{R}\right)^{\Delta C T_{R(\text { control-sample })}}} \\
& =\frac{\left(E_{R}\right)^{C T_{\text {sample }}}}{\left(E_{X}\right)^{C T_{\text {sample }}} \div \frac{\left(E_{R}\right)^{C T_{\text {calibrator }}}}{\left(E_{X}\right)^{C T_{\text {calibrator }}}}}
\end{aligned}
$$

- Use REST Software
- REST ${ }^{\oplus}$ (Relative Expression Software Tool)
- Pfaffl et al. 2002. Nucl. Acids Res; 30(9): E36
- http://www.gene-quantification.info/ then go to 'Data Analysis', 'qPCR software applications', 'REST versions', then scroll down to 'New REST software application are available:'

Fidelity in QPCR

\checkmark Specificity

- Assay design and project integration: a prerequisite
- Determining the amplification efficiency: a prerequisite
- Melting curve analysis: maybe (for spotting primer-dimers)
\checkmark Sensitivity
- TaqMan ${ }^{\circledR}$ or SYBR ${ }^{\circledR}$: comparable dynamic range, sensitivity

Efficiency

- $E_{\text {exp }}=10^{(-1 / s)}-1$ over a wide range of input material
- Pearson correlation coefficient $r \geq 0.95$

Accuracy and Reproducibility

- Replicates for intra-assay precision
- Strategy: RT = main source of variability \Rightarrow single cDNA pool, RT assay optimization
- Repetitions for inter-assay precision (Reproducibility)
- not necessary (> peer reviewer's thinking)
- Use a calibrator for inter-plate-normalizations
- Optimizing sub-optimal experiments: always E, RTrxn

Experimental Variation

- Biological Variations
- = f\{population being studied\},
- Large CV (e.g. gene expression: CV 20 to 100\%)
- Process Variations
- Random variations: common-cause errors, not affecting all samples, $=$ f\{accuracy, standard operating procedure\}
- e.g. pipetting errors
- Systemic variations: biasing all samples, $=$ f\{calibration, standard operating procedure\}
- e.g. software settings in sequence detection systems
- System Variations
- System constant, affecting all samples equally, = f\{instrument accuracy\}
- Fluorescence increase I is proportional to the amount of target DNA: $I=k \cdot R_{C T}$

Accuracy versus Precision

- Accuracy
- How close a measurement is to the true or actual value
- Precision
- How close the measured values are to each other,
- = f\{variability of the data\}

AppliedBiosystems TechNotes 14-4

Example: 4 Populations

- A, B: small system and population variability, large fold difference between the means (30-fold, ~3\% CV)
- C, D: larger dispersion around the means, small fold difference between the means (1.3-fold, $\sim 30 \% \mathrm{CV}$)

Replicates

- Biological Replicates
- Separate biological samples, same treatment, > variability of the biology + variability of the quantitation process
- e.g. different RNA extractions from multiple animals, ...

Technical (Systematic) Replicates

- Aliquots from the same source run through the quantitation process independently, > variability of the process
- e.g. triplicates for PCR from cDNA from one RT reaction

How Many Replicates?

- The greater the fold changes between the means of different populations, the fewer replicates are needed.
- The more dispersed the population variability, the more biological replicates are needed:

PCR Reproducibility

- Standard Deviation and Coefficient of Variation
- Expressed as the Standard Deviation (SD) in C_{T}, as the square root of the variance. The variance is

$$
S D^{2}=\frac{\sum_{i=1}^{n}\left(C_{T i}-\left\langle C_{T}\right\rangle\right)^{2}}{n-1}
$$

where $\left\langle C_{T}\right\rangle$ is the mean of the measured C_{T}

- Use "=STDEV(number1, number2, number3, ...)" in Excel
- The relative uncertainty in the number of DNA molecules is expressed by the CV, the Coefficient of Variation, which is the ratio of the standard deviation of a distribution to its arithmetic mean ($\langle X\rangle$): $C V=S D /\langle X\rangle$, or for QPCR: $C V=S D /\left\langle C_{T}\right\rangle$, or in \%:

$$
C V_{\%}=100 \frac{S D}{\left\langle(1+E)^{-C T}\right\rangle}
$$

```
where }\langle(1+E\mp@subsup{)}{}{-CT}\rangle\mathrm{ is the
mean of (1+E)-CT
```


Coefficient of Variation: Example

$$
C V_{\%}=100 \frac{S D}{\left\langle(1+E)^{-C T}\right\rangle}
$$

$$
0.039 / 14.561 \times 100=0.267 \%
$$

Sample Name	Detector	Reporter	Task	$\mathbf{C t}$	Ct mean	$\mathbf{S t ~ d e v}$	CV on Ct (\%)
Dil. $1: 10$	18 S	VIC	Std	14.589	14.561	0.039	0.267
Dil. $1: 10$	18 S	VIC	Std	14.577			
Dil. $1: 10$	18 S	VIC	Std	14.517			
Dil. $1: 100$	18 S	VIC	Std	18.115	18.148	0.092	0.508
Dil. $1: 100$	18 S	VIC	Std	18.252			
Dil. $1: 100$	18 S	VIC	Std	18.077			0.387
Dil. $1: 1000$	18 S	VIC	Std	22.051	21.973	0.085	
Dil. $1: 1000$	18 S	VIC	Std	21.882			0.348
Dil. $1: 1000$	18 S	VIC	Std	21.882			
Dil. $1: 10000$	18 S	VIC	Std	25.462	25.365	0.088	
Dil. $1: 10000$	18 S	VIC	Std	25.291			
Dil. $1: 10000$	18 S	VIC	Std	25.341			
Dil. $1: 100000$	18 S	VIC	Std	29.261	29.244	0.024	0.083
Dil. $1: 100000$	18 S	VIC	Std	29.216			
Dil. $1: 100000$	18 S	VIC	Std	29.255			

Calculating Standard Deviations

- $S D=f\{Q P C R$ Data Analysis Method\}
- For the Standard Curve Method:
- The $S D_{Q}$ for the normalized (GOI/Ref) quotient Q is calculated using: $S D_{Q}=C V_{Q} \cdot\langle X\rangle$, with

$$
C V_{Q}=\left(C V_{G O I}^{2}+C V_{\text {Ref }^{2}}\right)^{1 / 2}
$$

For the Comparative Method:

- The $S D_{S}$ for the difference (of ΔC_{T} values) is based on the SD of the GOI AND SD of the reference values: $S D_{S}=\left(S D_{G O I}{ }^{2}+S D_{\text {Ref }^{2}}\right)^{1 / 2}$
- The SD of the $\Delta \triangle C T_{r}$ is the same as the $S D_{s}$.

OK, now let's put everything together - Error Handling for the relative quantification in practice:
a) Standard curve method, b) Comparative method

a) Error Handling for the Standard Curve Method

- $N=\left(N_{G O I} / N_{\text {Ref }}\right) \times\left(C V_{G O I}^{2}+C V_{\text {Ref }}{ }^{2}\right)^{1 / 2}$
- The average values of the GOI replicates is divided by the average values of the reference samples ($\left.N_{G O I} / N_{\text {Ref }}=: Q\right)$. The $S D_{Q}$ of the quotient is calculated using:
$C V_{Q}=S D_{Q} /\langle X\rangle=\left(C V_{G O I}^{2}+C V_{\text {Ref }}{ }^{2}\right)^{1 / 2}(V)$
i.e., calculate the SDs for the replicates of GOI and Ref first, then their individual CVs. Use these CVs to calculate the CV for the normalized (GOI/Ref) using (V). Obtain the $S D_{Q}$ of the quotient using $S D_{Q}=C V_{Q} \cdot\langle X\rangle$

	$\begin{aligned} & \text { GOI } \\ & \text { mean } \end{aligned}$	$\begin{gathered} \hline \text { GOI } \\ \text { SD } \end{gathered}$	$\begin{gathered} \mathrm{GOI} \\ \mathrm{CV} \end{gathered}$	Ref mean	Ref	$\begin{aligned} & \text { Ref } \\ & \mathrm{CV} \end{aligned}$	$\begin{gathered} \hline \text { GOI/ } \\ \text { Ref } \end{gathered}$	CV_{Q}	$S D_{Q}$
Brain ${ }^{\text {\& }}$	0.039	0.004	$\begin{aligned} & 0.004 / 1 \\ & 0.039= \\ & 0.1026 \end{aligned}$	0.54	0.034	$\begin{aligned} & 0.034 / \\ & 0.54= \\ & 0.063 \end{aligned}$	$\begin{aligned} & 0.039 / \\ & 0.54= \\ & 0.072 \end{aligned}$	0.12*	$\begin{gathered} 0.12 \\ 0.072= \\ 0.009 \end{gathered}$
Kidney\&	0.41	0.016	$\begin{aligned} & 0.016 / \\ & 0.41= \\ & 0.039 \end{aligned}$	1.02	0.052	$\begin{aligned} & 0.052 / \\ & 1.02= \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.41 / \\ & 1.02= \\ & 0.402 \end{aligned}$	0.06\#	0.06 $0.402=$ 0.026

$$
\begin{array}{ll}
\text { \&: samples } & \text { *: SQRT }\left[0.1026^{2}+0.063^{2}\right]=0.12 \quad S D=C V\langle X\rangle=0.12 \times 0.072=0.0087 \\
\text { from Table 1, } \#: S Q R T\left[0.039^{2}+0.051^{2}\right]=0.06 \quad S D=C V\langle X\rangle=0.06 \times 0.402=0.0258 \\
\text { slide } 13
\end{array}
$$

b) Error Handling for the Comparative C_{T} Method

- $N=2-\triangle \Delta C T(2-\Delta \Delta C T-S D s-2-\triangle \Delta C T+S D s)$
- Calculate mean, SD and CV for replicate C_{T} values of GOI and Ref, reject >4\%CV.
- Determine $\Delta C T_{r}=\left\langle C T_{G O I}\right\rangle-\left\langle C T_{185}\right\rangle$. The SD of the difference $\left(S D_{s}\right)$ is based on the SD of the GOI and the SD of the reference values: $S D_{S}=\left(S D_{G O I}{ }^{2}+S D_{\text {Ref }}{ }^{2}\right)^{1 / 2}$
- Normalize each $\triangle C T_{r}$ value to a particular $\triangle C T_{c}$ value of an assay calibrator (cb): $\Delta \Delta C T_{r}=\Delta C T_{r}-\triangle C T_{c b}$. The SD of the $\Delta \Delta C T_{r}$ is the same as the $S D_{S}\left(S D_{\Delta \Delta C T_{r}}=S D_{\Delta C T_{r}}\right)$.
- The final relative values (fold induction) are $2^{-\triangle \Delta C T}$ with $\Delta \Delta C T_{r}-S D_{S}$ and $\Delta \Delta C T_{r}+S D_{S}$
Table 3. Relative Quantitation Using the Comparative C_{T} Method

Tissue	c-myc Average C_{T}	GAPDH Average C_{T}	$\begin{gathered} \Delta \mathrm{C}_{\mathrm{T}} \\ \text { c-myc-GAPDH } \end{gathered}$	$\stackrel{\Delta \Delta \mathrm{C}_{\mathrm{T}}}{\mathrm{C}_{\mathrm{T}}-\Delta \mathrm{C}_{\mathrm{T}, \text { Brain }}{ }^{\mathrm{b}}}$	$\mathrm{c}-\mathrm{myc}_{\mathrm{N}}$ Rel. to Brain ${ }^{\text {c }}$
Brain	30.49 ± 0.15	23.63 ± 0.09	6.86 ± 0.17	0.00 ± 0.17	$\begin{gathered} 1.0 \\ (0.9-1.1) \end{gathered}$
Kidney	27.03 ± 0.06	22.66 ± 0.08	4.37 ± 0.10	-2.50 ± 0.10	$\begin{gathered} 5.6 \\ (5.3-6.0) \end{gathered}$

$$
\begin{array}{ll}
\text { a, b: SQRT }\left[0.15^{2}+0.09^{2}\right]=0.175, & c: 2^{0.0+0.175}=1.1,2^{0.0-0.175}=0.88 \\
\text { a, b:SQRT[0.062 } \left.+0.08^{2}\right]=0.100, & c: 2^{2.5+0.100}=6.06,2^{2.5-0.100}=5.28
\end{array}
$$

Remarks to Quantitative Precision

- Implications
- The calculations of precision given above have been questioned in some peer-reviewed publications.
$\mathrm{C}_{\mathrm{T}}<36$
Baseline
Threshold
- Replicate standard curves may produce potentially large inter-curve variations.
- In general, the intra-assay variation of $10-20 \%$ and a mean inter-assay variation of $15-30 \%$ on molecule basis is realistic over the wide dynamic range (of over a billion fold range).
- Variability is highest at $>10^{7}$ and $<10^{2}$ template copy ranges
- Cut-off value: cycle 35, i.e. disregard C_{T} values for cycle numbers 36 and higher.
- For the threshold methods, the precision is dependent on the proper setting of the threshold, which itself is dependent on proper base line settings.

A Recent User Submission

	A	B	C	D	E	F	G	H	1	J	K	L	M
	GOI	REF	AV GOI	AV Ref	$\begin{aligned} & \text { STDEV } \\ & \text { GOI } \end{aligned}$	STDEV REF	CV on CT GOI	CV on CT ref	дСT	SD дCT	дวСт	$\begin{aligned} & \text { SD } \\ & \partial \partial C T \end{aligned}$	Result
	21.82	6.89											
	23.62	8.13											
	21.47	7.35											
	23.14	8.53	22.51	7.73	1.03	0.74	4.58	9.60	14.79	1.27	3.51	1.27	4.71
													27.37
	22.42	7.81											
	23.01	7.79											
	23.21	8											
	22.41	7.05	22.76	7.66	0.41	0.42	1.80	5.47	15.10	0.586	3.82	0.59	9.39
													21.16
	22.48	8.03											
	20.7	7.36											
	20.56	7.63											
	20.66	7.58	21.10	7.65	0.92	0.28	4.37	3.65	13.45	0.963	2.17	0.96	2.30
\square													8.76
-	19.3	7.92											
	19.11	7.97											
	18.94	7.89											
	19.42	7.86	19.19	7.91	0.21	0.05	1.10	0.59	11.28	0.216	0.00	0.22	0.86
													1.16

Integrated Genomics－The Future？

－Real－Time StatMiner™
－http：／／www．integromics．com／StatMiner．php

ERealTime StatMiner－［Start］	－$\square \times$
Eile View Window Help口今日 8 回回日回。	－ $8 \times$

Analysis Workflow Checklist

11 （Optional）－Report

Optimizing Primer Concentrations

- Primer Optimization Matrix
- Maximize $\Delta R n$:
- Suggested conc.:
- 900nM for TaqMan
- 50nM for SYBR Green

Rainer B. Lanz, M.S., Ph.D.

Optimizing Probe Concentrations

- Secondary to Primer Optimization
- Maximize $\Delta R n$:

Primer $[n M]$	Probe $[n M]$
$100 / 900$	50
$100 / 900$	125
$100 / 900$	250
$100 / 900$	500

- Suggested conc.:
- 250nM

Optimizing Genotyping Experiments

- Scattering of Data Points / Diffuse Clusters
- Low DNA concentrations
- Suggested: > 1ng (relatively high)

Multiplexing

- Primer-Limited Assays
- ABI Vic ${ }^{\oplus}$ reporter dyes are primer limited, allowing multiplexing of TaqMan ${ }^{\circledR}$ endogenous controls with GOI quantitation.
- Extensive assay optimization
- Normal probe levels: 250nM
- Suggested primer conc.:
- 50nM or less
- Determine plateau region:
- CT values are constant

Revisiting the Goals

Questions a PI should ask when presented with QPCR data:

- How does this assay integrate with the project?
- 1 primer pair per question! (1pppq)
- Did you use a 'One-step' kit?
- If "Yes" -> deny the assay!
- What assay was used? commercial or custom design?
- What chemistry was used? Why?
- If TaqMan: MGB or conventional probe?
- What is the amplification efficiency (E) for this amplicon?
- Show me the 'Primer validation' experiment!
- How do the amplification plots look like?
- How did you adjust the baseline, the threshold?
- How many times did you measure this result? How many runs were necessary to get to this result?
- What method of data evaluation did you use?
- If $\Delta \Delta C_{T}$: show me the validation experiment.
- How many replicates were used for the measurements?
- Are any C_{T} values larger than 35?
- What did you do for error handling?

Selected References

- Bookout A. and Mangelsdorf D. (2003), Nuclear Receptor Signaling 1, e012,
- Ditto, Supplementary File 1: QPCR Protocols and Worksheets
(http://nursa.org/ejournal/published/01012/nrs01012.sp1.pdf)
- Applied Biosystems. (1997) Relative Quantitation Of Gene Expression: ABI PRISM 7700 Sequence Detection System: User Bulletin \#2: Rev B. (AppliedBiosystems PN 4303859)
- Collins M.L et al (1995), Preparation and characterization of RNA standards for use in quantitative branched DNA hybridization assays. Anal. Biochem. 226: 120-129
- Higuchi, R. et al. (1992). Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10:413-417.
- Higuchi, R. et al. (1993). Kinetic PCR: Real time monitoring of DNA amplification reactions. Biotechnology 11:1026-1030.
- Kwok, S. and Higuchi, R. (1989) Avoiding false positive with PCR. Nature 339:237238.
- Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the $2^{-\Delta C C T}$ Method. Melthods 25:402-408.
- Livak, K.J. et al. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl.4:357-62
- Morrison, T.B. et al. (1998) Quantification of Low-Copy Transcripts by Continuous SYBR Green I Monitoring During Amplification. Biotechniques 24(6):954-962.
- Suzuki T. et al. (2000) Control Selection for RNA Quantification. Biotechniques 29(2):332-337.
- Whittwer C.T. et al. (1997) Continuous Fluorescence Monitoring of Rapid Cycle DNA Amplification. Biotechniques 22(1):130-138
- Pfaffl et al. (2002) Nucl. Acids Res; 30(9): E36

