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DNA microarrays and beyond: completing
the journey from tissue to cell

Jason C. Mills, Kevin A. Roth, Ross L. Cagan and Jeffrey I. Gordon

For the cell biologist, identifying changes in gene expression using DNA microarrays is just the start
of a long journey from tissue to cell. We discuss how chip users can first filter noise (false-positives)
from daunting microarray datasets. Combining laser capture microdissection with real-time poly-
merase chain reaction and reverse transcription is a helpful follow-up step that allows expression of
selected genes to be quantified in populations of recovered cells. The voyage from chip to single cell
can be completed using sensitive new in situ hybridization and immunohistochemical methods based
on tyramide signal amplification.

Gasp! Why another review about DNA
microarrays? Haven’t there been
enough excellent descriptions of this

technology published recently (see, for
example, refs 1, 2)? Like many cell biologists,
we have used commercial versions of this
technology over several years to profile gene
expression in our favourite tissue. We too
have had to find practical ways of processing
the resulting deluge of information. The
promise of microarrays for the cell biologist
is to provide a more complete molecular
view of cellular states and responses in com-
plex tissues3. The challenge is to translate
this information to the level of individual
cells. In this commentary, we discuss new
approaches to aid the journey from tissue to
cell. These approaches include: methods for
separating signal from noise in vast
microarray datasets, and for sorting lists of
genes; the use of laser-capture microdissec-
tion and real-time polymerase chain reac-
tion with reverse transcription (RT-PCR) to
interpret changes in gene expression quanti-
tatively; and the application of sensitive,
rapid in situ-hybridization methods to iden-
tify cells that contain messenger RNAs of
interest. We throw in some of our own solu-
tions to problems you are likely to face, and
provide some (free!) software to help you
along the way.

Choosing your array
Microarrays come in two basic flavours:
complementary DNA (cDNA) or oligonu-
cleotide arrays. cDNA arrays can be obtained
commercially on filters, or made on glass
slides. To compare mRNA levels in two RNA
preparations using glass-slide microarrays,
probes are made from each preparation and
one set is labelled with Cy3 fluorescent dye,
and the other with Cy5. After hybridization
to a single microarray, relative mRNA 
levels can be determined from the 
Cy3/Cy5 signal for each gene (see http://
cmgm.stanford.edu/pbrown/mguide/index.
html for information about array manufac-

ture, probe generation and hybr-
idization protocols, and for data-analysis 
software). Affymetrix GeneChips (http://
www.affymetrix.com; ref. 4) are a popular
type of oligonucleotide array. These chips
offer sophisticated internal controls; each
GeneChip contains up to 6,500 different
genes. Each gene is represented by at least
one set of ~20 different ‘probe pairs’. A
probe pair consists of a 25-base-pair (bp)
‘perfect-match’ oligonucleotide probe and a
25-bp ‘mismatch’ probe, in which the 13th
position is designed not to match the target
sequence (in Affymetrix-speak the oligonu-
cleotide ‘probe’ sequences are on the chip,
and the ‘target’ is the cRNA made from cel-
lular RNA). The information across all 20
paired probes (the ‘probe set’) is integrated
by proprietary GeneChip software. The
software compares mRNA levels in two
RNA preparations by analysing probe-set
signals from two GeneChips — one
hybridized with cRNA made from the first
RNA preparation, the other hybridized with
cRNA generated from the second.

Regardless of the system chosen, array
experiments yield far more information
than we are used to processing. So the first
step in analysing these large data sets is to
separate signal from noise.

Dealing with the data avalanche I:
filtering noise
GeneChips are a good model for discussing
noise: they are popular, mass-produced
and, as discussed above, come with internal
controls designed to reduce noise. In com-
parisons of two distinct populations of
RNA, GeneChips yield a false-positive rate
of only 1–2% (refs 4, 5). However, 1%
means 100 false positives in a comparison
of 10,000 genes2,6. As you may be dealing
with ‘only’ a few hundred real changes, this
false-positive rate can wreak havoc on an
experiment’s signal-to-noise ratio.

How do you distinguish real signals
from noise in a chip-to-chip comparison?

To date, most chip users have used two
approaches. One is to use a form of repli-
cate analysis (Fig. 1a, b). The other is to
impose an arbitrary threshold of signal dif-
ference between experimental and control
samples (fold-change), above which differ-
ences are considered to be real1,7. Each
approach has its limitations: carrying out
replicated chip experiments is expensive,
whereas using an arbitrary threshold for
fold-change (for example, defining an
increase or decrease of at least twofold as
significant) means that potentially impor-
tant and reproducible biological changes
could be masked. Also, fold-change is a
ratio: probe intensities only reflect expres-
sion differences linearly within a limited
range; if either probe-set has hybridization
intensities outside this range, the ratio will
be skewed1,7.

We have developed an empirical
approach for eliminating noise from
Affymetrix mouse GeneChip data sets. To
develop this method, duplicate cRNAs were
generated from a single preparation of
mouse-organ RNA, and independently
hybridized to a pair of chips (Fig. 1c). One
array was arbitrarily designated as the ‘base-
line chip’, and the other as its ‘partner’.
Genes with expression levels designated as
‘increased’ or ‘decreased’ by GeneChip soft-
ware in a comparison of baseline and part-
ner chips were defined as false-positives
(noise). A three-dimensional plot was then
be prepared, with the signal intensities of
false positives on the baseline chip plotted
on one axis, and the intensities of the sig-
nals from the corresponding probe-sets on
the partner chip on another axis. The third
axis was used to express each combination
of baseline and partner chip intensities as a
fraction of the total number of false posi-
tives on the entire grid. The location of
false-positive signals (determined on 9
grids generated from 18 paired compar-
isons of 9 independent RNA preparations)
was used to rank combinations of signal
intensities from the baseline and partner

© 2001 Macmillan Magazines Ltd



commentary

chips that are most characteristic of noise.
This ranking was expressed in the form of
look-up tables (LUTs; see http://gordon-
lab.wustl.edu/mills), which allow noise

(false positives) to be filtered from compar-
isons of biologically distinct RNAs. We have
found that LUTs can eliminate 90% of
noise, and that LUT-filtered changes in

gene expression are more reproducible than
those filtered by the customary (but arbi-
trary) requirement for a two- or threefold
change in gene expression. For a good
example of how to analyse noise in data sets
from cDNA microarrays, see ref. 9.

Dealing with the data avalanche II:
categorizing genes
Genes represented on arrays are not always
well characterized (for example, they may
be expressed sequence tags (ESTs)), and
their functions are not necessarily apparent
in the bioinformatic databases that are sup-
plied with commercial arrays. Hence, once
the noise has been filtered from a data set,
the remaining genes that exhibit changes in
expression must be accurately identified.

Fortunately, much of this gene ‘data min-
ing’ can be done automatically. For example,
lists of genes from array experiments can be
imported into a spreadsheet application such
as Microsoft Excel. ‘Visual Basic for
Applications’ (VBA, the Excel macro lan-
guage) can then be used to create a program
that retrieves information from public data-
bases about each gene on a list. VBA is
straightforward: you don’t need to be a soft-
ware guru to design your own personalized
search engine! Alternatively, we have expand-
ed the VBA-based bioinformatics software
developed in our laboratory to create a user-
friendly package. The software takes lists of
mouse, human or rat genes (identified 
by GenBank accession number) and queries 
the UniGene database (http://www.
ncbi.nlm.nih.gov/UniGene) to obtain the lat-
est gene-specific information. Each gene is
then hyperlinked to GenBank, TIGR,
UniGene, and SwissProt for easy reference.

This software can be downloaded from
our website (http://gordonlab.wustl.edu/
mills). There are many other software
options available for microarray analysis,
both ‘home-made’ (like ours) and commer-
cial1 (see http://linkage.rockefeller.edu/
wli/microarray).

Chip comparisons tend to flood the user
with genes that span a large number of
functional categories. Even nomenclature
can be a problem: genes may be cloned
independently and given two or more dif-
ferent names, complete with non-intersect-
ing literature references. Fortunately, most
key papers are now published online. In
addition to PubMed and Medline, several
sites are now devoted to collecting and
organizing gene information. These include
the ExPASy molecular-biology server
(http://www.expasy.ch; see especially the
‘NiceProt’ summaries), Online Mendelian
Inheritance for Man (OMIM; http://
www.ncbi.nlm.nih.gov/Omim), the Munich
Information Center for Protein Sequences
(MIPS; http://www.mips.biochem.mpg.de),
MedMiner (http://discover.nci.nih.gov/
textmining/filters.html) and Genecards
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Figure 1 Dealing with noise in microarray datasets. a, b, Strategies for replicated
microarray analysis. a, Analytical duplication, in which two biologically distinct RNAs are
compared. Duplicate cRNA targets are produced from each RNA sample; each cRNA is
then hybridized to a chip. The expression profiles generated are compared as shown.
Only replicated differences (such as a gene being designated as ‘increased’ in two sepa-
rate comparisons) are selected for subsequent analysis. b, Biological duplication, in which
a biological experiment is carried out twice. Each time, two RNA samples are obtained
(for example, from an experimental and a control group). cRNA is generated from each
RNA and each cRNA and is hybridized to a single chip. The comparison scheme shown is
used to identify changes in gene expression that are exhibited in both experiments. c,
Identification of the features of noise. A single RNA is used to produce duplicate cRNAs,
which are then independently hybridized to a pair of microarrays. Transcripts designated
as ‘increased’ or ‘decreased’ in a comparison of these paired chips are defined as false
positives. By plotting the distribution of signal intensities across such comparisons, we
have generated a series of look-up tables (LUTs, see text) for defining noise in Affymetrix
GeneChip comparisons of biologically distinct mouse RNAs.
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(http://bioinformatics.weizmann.ac.il/
cards).

The principal aim is to assemble
microarray hits into pathways and func-
tional groups that provide an intelligible
story of a cell’s state, or its response to a
stimulus. At present, there is no easy way to
navigate through this stage of the analysis.
Eventually, as increasing numbers of
microarray data sets are collected and cata-
logued, certain combinations of gene-
expression profiles will emerge as ‘finger-
prints’ that identify particular pathways or
cellular processes. For example, a stereo-
typed set of changes in a particular group of
genes may identify a specific signal-trans-
duction pathway, or suggest a stress
response. Finding such modular respons-
es10in data sets using this approach is not a
pipe dream; there have been exciting recent
steps towards establishing internet-search-
able databases of compiled microarray
results from different laboratories11.

After a list of genes has been compiled
and annotated, it is usual to select a subset of
these genes to independently validate
changes in their expression. We have found
real-time, quantitative RT-PCR (qRT-PCR12)
especially useful in this capacity. To reduce
the cost of this expensive technique, SYBR
green can be used to label PCR products13.

Analysing the positives
The result of all the previous analysis
should be a list of genes with validated
changes in expression. As a cell biologist,
now comes the fun part: determining the
cellular basis of the altered gene expression
in a particular tissue. Below, we outline
some recently developed methods that
should help.
Laser-capture microdissection. A useful
way to define responses in quantitative
terms within specific cell populations is
laser-capture microdissection (LCM)14,15

with real-time qRT-PCR. LCM uses a
laser to capture small numbers of cells
from frozen tissue sections16. The laser
fuses each targeted cell to a film (http://
www.arctur.com has information about
a popular LCM system). The captured
cells are then transferred to a test tube
for isolation of RNA (see http://
dir.nichd.nih.gov/lcm/lcm.htm for
information about LCM, LCM protocols,
and links to cDNA sequence databases
generated from microdissected cell pop-
ulations). An exciting direction for the
future is the use of LCM as the starting
point for proteomic analyses17,18.

The precision of LCM allows the resolu-
tion of quantitative gene-expression analysis
to be increased from the level of a tissue to
one or more of its component cell popula-
tions. However, a significant hurdle is devis-
ing a way to mark those cell populations
without degrading their RNA. One way is to

cut serial sections and then label one sec-
tion with cell-type-specific markers. An
electronic image of the labelled section can
then be used as a template to guide dissec-
tion of adjacent, unlabelled sections (we
called this method ‘navigated’ LCM19).

Another challenge of LCM is to obtain
sufficient amounts of RNA from captured
cell populations. Fortunately, protocols
are constantly improving (see http://
dir.nichd.nih.gov/lcm/Protocol.htm for

the latest). A typical good yield is 10–30 pg
of RNA per cell. A few hours of laser cap-
turing can isolate several thousand cells,
more than enough for qRT-PCR validation
of the level of a transcript of interest (we
have found that 500 cell equivalents is
enough for a single determination).
Sensitive methods for in situ hybridization.
As a cell biologist, you will probably want to
examine microarray-identified changes in
gene expression at single-cell resolution.
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Figure 2 Illustration of tyramide signal amplification (TSA)-based in situ hybridization
(ISH). a, ISH detection of Bcl-X mRNA using a Dig-labelled cRNA probe and TSA Plus
Direct Cy3 in a human brain tumour. Numerous Bcl-x expressing cells (red) are evident in
this formalin-fixed, paraffin-embedded section of human glioblastoma multiforme. Cell
nuclei are labelled with Hoechst 33,258 (blue). b, Dual ISH and immunohistochemical
detection in embryonic mouse brain. Proliferating cells in the forebrain of a Bouin’s fixed,
paraffin-embedded mouse embryo were identified using a Dig-labelled H4 cRNA probe,
and TSA Plus Direct Cy3 (red). Postmitotic neurons were identified using antibodies
against microtubule-associated protein 2 (MAP2) and TSA Plus Direct fluorescein (green).
Cell nuclei are labelled with Hoechst 33,258 (blue). Cells containing H4 mRNA are appar-
ently restricted to the inner half of the section, in a region known as the ventricular zone,
whereas MAP2-immunoreactive cells are largely confined to the outermost portion of the
forebrain, which corresponds to the developing mantle zone. Scale bars, 50 µm.
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Fortunately, in situ-hybridization (ISH)
techniques have become much simpler and
quicker with the advent of detection using
tyramide-signal amplification (TSA). TSA-
based methods are faster and more sensitive
than traditional ISH. Furthermore, they are
compatible with a variety of tissue-fixation
protocols and can be used in conjunction
with immunohistochemical staining to
identify cell populations accurately20–22.

TSA is based on horseradish peroxidase
(HRP)-catalysed deposition of labelled
tyramine at sites of probe binding (see
http://www.nen.com/products/tsa). HRP
converts tyramine into a highly reactive,
oxidized intermediate that binds rapidly
and covalently to cell-associated proteins
located at or near the HRP-linked probe.
Signals can be detected at this stage by using
a tyramine–fluorophore conjugate (this is
known as the ‘TSA direct method’).
Alternatively, tyramine conjugated to non-
fluorescent intermediates such as biotin can
subsequently be detected using fluorescent-
ly labelled or enzyme-linked streptavidin
(the ‘TSA indirect method’).

We have recently developed a simple pro-
tocol for ISH using second-generation TSA
Plus reagents (NEN Life Sciences)23. This
method can be carried out on either frozen
or paraffin-embedded tissue sections (Fig.
2a), and the turn-around time can be as little
as 8 h from probe application to probe detec-
tion. The protocol can also be modified for
multi-label ISH or for dual ISH and
immunohistochemical detection (Fig. 2b).
Unlike antibody-dependent staining, once
tissue fixation and processing are optimized,
probes made from any gene should work
equally well, facilitating the high-throughput
that microarray users need. All in all,
TSA–ISH seems poised to become the
method of choice for interpreting tissue-
based microarray results at single-cell resolu-
tion. Its role may be cemented over the next
few years, as systems are being developed to
automate hybridization and labelling.

Tomorrow 
What about the future? First, Moore’s ‘law’
— that technology doubles the capacity of
microchips roughly every 18 months —

may not apply to microarrays. In the case of
microarrays, the rate of increase in the
number of different sequences available on
chips may double at a faster rate than this.
We will probably have chip sets containing
whole mammalian genomes within a few
years, and costs should continue to tumble.

In the short term, methods will be
developed so that LCM can be coupled to
microarray-based analysis, allowing gene
expression to be comprehensively profiled
in small numbers of cells or even in single
cells. The current limitation is low RNA
yield, so new techniques must be developed
to amplify sequences before hybridization
to chips24,25.

Once expression analyses reach this reso-
lution, we will undoubtedly face new aspects
of biological variation. For example, in sim-
pler organisms such as Caenorhabditis ele-
gans and Drosophila, seemingly equivalent
neighboring cells can exhibit markedly dif-
ferent patterns of gene expression and
developmental fates. Furthermore, in a
comprehensive study of gene-expression
profiles in yeast, untreated isogenic cells
showed significant fluctuation in gene
expression between ‘identical’ cultures8.
Microarrays and associated technologies
will allow us to explore further the biologi-
cal variation within and between cell lineag-
es. An even more dynamic view of what
constitutes a cell is on the horizon.
The authors are in the Department of Molecular
Biology and Pharmacology (J.C.M. and K.A.R. are
also in the Department of Pathology and
Immunology), Washington University School of
Medicine, St Louis, Missouri 63110, USA.
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