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Almost all samples used in tumor biology, such as tissues and bodily fluids, are heterogeneous, i.e., con-
sist of different cell types. Evaluating the degree of heterogeneity in samples can increase our knowledge
on processes such as clonal selection and metastasis. In addition, generating expression profiles from spe-
cific sub populations of cells can reveal their distinct functions. Tissue heterogeneity also poses a chal-
lenge, as it can confound the interpretation of gene expression data. This chapter will (1) give a brief
overview on how heterogeneity may influence gene expression profiling data and (2) describe the meth-
ods that are currently available to assess transcriptional biomarkers in a heterogeneous cell population.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The official NIH definition of a biomarker is: “a characteristic
that is objectively measured and evaluated as an indicator of nor-
mal biologic processes, pathogenic processes, or pharmacologic re-
sponses to a therapeutic intervention” [1]. Many different uses of
biomarkers fall under this broad definition, including screening
(i.e., detection of pathology in the general population), monitoring
(i.e., determining the disease status and evolution over time in a
patient with a known illness), differential diagnosis (i.e., distin-
guishing one disorder from other, similar disorders) and use as
prognostic and predictive factors. For this review, we will focus
on prognostic and predictive biomarkers. A prognostic marker is
associated with patients’ outcome regardless of the administered
treatment, and is thus reflective of the natural progress of the dis-
ease. A predictive marker is associated with response to a specific
therapy, and can thus aid the physician in determining the optimal
treatment strategy. Besides these uses with direct clinical conse-
quences, biomarkers can also increase our knowledge of tumor
biology, by using them to identify and quantify specific cell types
present in a tissue or fluid, or isolating subsets of cells from com-
plex materials which can then be characterized further to reveal
their function and phenotype. Regardless of the purpose of deter-
mining a biomarker, especially in heterogeneous and evolving dis-
eases such as cancer, cells in vivo do not always adhere to the rules
that were followed when the marker was identified and evaluated
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in vitro. Therefore, biomarkers to identify, quantify and character-
ize heterogeneous tissues or bodily fluids should be used with
caution to avoid under- or overestimation of the contribution of
the cell type to the phenotype of the investigated cell population.

In this review, we will first elaborate on the biology behind
tumor heterogeneity and how this affects clinical reality. Then,
we will discuss the definition and applications of prognostic and
predictive factors in cancer. We will discuss the various techniques
that are currently available to isolate distinct cell populations from
solid tissue and fluids, and finally the available methods for char-
acterization of these cell populations down to the single-cell level.

1.1. The biology of tissue heterogeneity

Cancer is thought to be the consequence of clonal growth of one
single cell containing one or multiple oncogenic somatic muta-
tions. By the time a tumor lesion is detected, countless generations
of daughter cells have been generated, and many pass on their
acquired mutations to their individual clonal progeny. These
acquired mutations occur at a rate much faster than would be
expected when assuming mutation rates as observed in normal tis-
sues. Many researchers assume that genomic instability, i.e., the
adoption of a mutator phenotype which leads to an elevated rate
of acquired mutations, is mandatory to generate the number of
mutations that are necessary for malignant transformation. While
the absolute necessity of genomic instability for the malignant
transformation of a tumor has not been proven, evidence of
genomic instability can be observed in cancer lesions [2] and has
been linked to drug resistance in cell line models [3]. This drug
resistance is thought to be augmented by the administration of
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cytotoxic treatment, as unstable cells are able to avoid cell cycle ar-
rest after DNA damage while genomically stable cells do undergo
cell cycle arrest and thus have a lower proliferation rate. Based
on this reasoning, and only recently compellingly shown for solid
tumors [4,5], a tumor consists of many sub clones with various
and differing acquired mutations, leading to tumor heterogeneity.

This tumor heterogeneity has a profound impact on the optimal
approach to biomarker analysis. When treatment decisions are
being made based on the presence or absence of an amplified or
mutated gene, but this gene is only mutated in a small clone with
limited proliferative potential, one has to wonder whether we are
currently truly employing “targeted therapy”. Moreover, when
basing treatment decisions on tumor biopsies or small fragments
of a tumor, we cannot conclude that said phenotype is characteris-
tic of the whole tumor. The lack of response that is observed even
when selecting tumors based on activating mutations, such as KIT
or PDGFRA in gastrointestinal stromal tumors (GIST), can be ex-
plained by the presence of a small clone with an additional down-
stream mutation of e.g. KRAS or BRAF [6]. This sub clone would
then be able to circumvent the inhibitory effect of the targeted
treatment, in this case imatinib, and has a survival advantage over
the other sub clones. This example underlines the caution that
needs to be employed when interpreting biomarker analyses of
heterogeneous tissues.

1.2. The limitations of relying on a single marker

It is well accepted that gene expression differs in-between
tissues. But also within tissues, even those of the same organ or
tumor, there might still be a lot of heterogeneity [7]. An example
of this is shown in Fig. 1 for the expression of EpCAM (epithelial
cell adhesion molecule).

EpCAM is a cell surface molecule that functions as a homotypic
calcium-independent cell adhesion molecule and is known to be
expressed on most normal epithelial cells and epithelial tumor
cells. The antigen is being used extensively as a marker for the
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enrichment of epithelial (cancer) cells from blood and, less exten-
sively, for immunomodulatory treatment of human carcinomas [8].
Despite being a broadly expressed and well-validated marker,
there is a risk in relying on only one target for the purpose of can-
cer detection and treatment. This has been demonstrated by work
of our own group, in which we demonstrated that EpCAM-based
isolation of circulating tumor cells does not enable detection of,
in particular, normal-like breast cancer cells, which can have
aggressive features [9].

Below we will now give examples - focused on the field of
breast cancer with EpCAM as our example molecule, but applicable
to different molecules and various kinds of cancer and diseases - of
putatively suitable markers to evaluate tissue heterogeneity. We
will also elaborate on how additional biomarkers can be identified
by measuring the expression of mRNA gene transcripts in primary
tumors of cancer patients. After this, it should become clear that
there is still an urgent need for new predictive and prognostic bio-
markers, especially those biomarkers that are specific for individ-
ual cell types present in a complex background mixture of cells.

1.3. Prognostic and predictive markers

To truly appreciate the putative wealth of information reflected
by biomarkers, it is important to understand the difference be-
tween a prognostic and a predictive marker. In oncology, a prog-
nostic marker predicts disease recurrence and ultimately survival
in the adjuvant setting or tumor progression in the metastatic
setting, independent of future treatment effects. A predictive bio-
marker predicts response or resistance to a specific cancer therapy.
Any change in disease status during treatment should be reflected
by a change in the marker status [10]. Prognostic factors, e.g.
lymph node status, tumor size, histologic grade, proliferation in-
dex, ERBB2, hormone receptors and other biological markers are
used to predict the clinical course of breast cancer at the time of
primary treatment. Patients with a poor prognosis are offered
radiotherapy and systemic adjuvant therapy in the form of

positive

K1 Re N
A W 5 -
Fas Shiean L
RN
A s 4 .t. s
& y & S %
i Ny
¥ £ e | . &
,a W A\
negative

Fig. 1. Heterogeneous EpCAM staining in breast tumors. Example of heterogeneous epithelial cell adhesion molecule (EpCAM) staining within one invasive breast tumor with
a normal-like phenotype [16]. Representative formalin-fixed paraffin-embedded tissue section of a normal-like human breast tumor stained for expression of EpCAM protein
with a mouse-anti-human EpCAM antibody (clone VU1D9, Cell Signaling, Danvers, MA; 1:250 dilution, stained overnight after an antigen retrieval step in citrate buffer at pH
6.0; DAKO, Glostrup, Denmark). Anti-EpCAM (dark stain) was visualized with the peroxidase-conjugated Envision method from DAKO. The specificity of immunostaining was
controlled by using normal mouse IgG and by omitting the primary antibody. Magnifications: middle overview=x40 and bar length = 250 pum; boxed detail sections=x400

and bar length = 25 pm [9].
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endocrine, cytotoxic and/or biological anti-tumor therapy. Predic-
tion refers to the likelihood of response to a specific therapy. For
the choice of systemic adjuvant therapy, predictive factors such
as age, ERBB2 amplification and hormone receptor status are use-
ful, but are currently insufficient to truly select patients based on
their response rate to specific therapies. For example, even in pa-
tients with a strongly hormone receptor positive primary tumor,
a subset of patients is resistant to endocrine therapy, further
underlining the need for more and better equipped predictive
factors.

In general, biomarkers can be divided in circulating biomarkers
that are detected in body fluids and markers detected in tumor
tissue, with one new class of biomarkers, the circulating tumor
cells, bridging the two. Examples of established breast cancer
biomarkers are the serum-based cancer antigens CA 15-3, CA
125, carcinoembryonic antigen (CEA), the tissue-based estrogen
and progesterone hormone receptors, circulating tumor cells
(CTCs), several markers measuring DNA-ploidy/content and/or
proliferation, the oncogene ERBB2, the tumor suppressor gene
P53, and the protease urokinase plasminogen activator (uPA) and
its inhibitor plasminogen activator inhibitor 1 (PAI-1) [11-14]. Be-
fore markers can be used in clinical decision making, they should
be reported according to established guidelines as described in
Reporting Recommendations for Tumor Marker Prognostic Studies
(REMARK) [15], and be validated in well-designed prospective tri-
als to provide Level Of Evidence 1 [10] justifying their use.

2. Discovery of cancer heterogeneity through gene expression
profiles

The origin of heterogeneity is thought to lie within the evolu-
tionary path each cell has to take before it reaches its final, differ-
entiated destination. In this process, clonal selection and choosing
advantageous conditions to survive are influenced by various fac-
tors such as the (micro) environment, hypoxia and other difficult
conditions the cell has to deal with, and aging of the cell. All this
will result in an accumulation of events affecting both the geno-
type and phenotype of the individual cells in a tissue or fluid, lead-
ing to heterogeneity. This tissue heterogeneity can be appreciated
even with a simple morphologic evaluation, but its true extent has
become apparent through the measurement of gene and protein
expression profiling.

2.1. Molecular breast cancer markers

In order to estimate risk of cancer progression and to aid clini-
cians in choosing a patient-tailored therapy, molecular profiling
has been used extensively in recent years. Because these can reflect
the heterogeneity among tumors, microarray-based molecular
classification of tumors is now considered to be at least compli-
mentary to established clinical and pathological criteria such as
the aforementioned guidelines and prognostic tools.

The first well-known studies in this field, aimed at classifying
breast carcinomas based on gene expression patterns, are those
of Perou and Sorlie [16-20]. According to these studies, breast car-
cinomas can now, based on patterns of expression of 496 “intrin-
sic” genes, be distinguished in tumor subclasses with distinct
clinical implications:

(I) Luminal-epithelial group (with sub-classification into types
A-C), characterized by expression of the estrogen receptor
and genes associated with the estrogenic function, i.e., genes
that are typically expressed in the luminal epithelium that
lines the ducts.

(I) Basal-epithelial group, typically negative for the estrogen
and progesterone receptors as well as the ERBB2 (Her2/
neu) oncogene (“triple negative”).

(III) ERBB2 + group associated with over expression of the ERBB2
amplicon.

(IV) Normal breast-like group, a group of tumors bearing a close
resemblance to normal breast cancer cells but with aggres-
sive features.

Additionally, the Genomic Grade Index (GGI), capturing 97 dif-
ferentially expressed genes, can be used to distinguish patients
with a high versus a low risk of recurrence among patients with
histologic grade 2 tumors [21,22]. These two examples represent
a new class of biomarkers using gene expression profiles to classify
breast cancer. Additional examples of the numerous publications
based on the use of molecular profiles that appeared in the early
2000’s were those aimed at identifying:

histological subtypes [23-32],

subgroups with different prognosis [25,33-50],

subgroups with different sites of relapse [51-54],

subgroups with different response to treatment [49,55-75] and
circulating tumor cells [76-82].

Despite the overwhelming number of publications, only a few of
these profiles - such as MammaPrint and Oncotype DX for breast
cancer patients [83] — are now implemented into clinical practice.
Other molecular profiles still require extensive prospective valida-
tion. Ultimately, the presence of drug targets and targetable signal-
ing pathways rather than molecularly defined subgroups will most
likely drive treatment decisions [50,84]. However, in the interpre-
tation of all these profiles, we need to bear in mind that their re-
sults are based on nucleic acids isolated from complex tissues,
and are therefore only informative of the dominant cell types,
while a subpopulation of less abundant cells might be more indic-
ative of prognosis or tumor response.

3. The choice of sample for marker evaluation

Clinical samples can be divided into two major types: solid tis-
sues and liquid samples. Solid tissues usually concern either biop-
sies or surgical resection specimens. They can be stored in liquid
nitrogen to stay fresh-frozen (FF) or alternatively, they can be
embedded in paraffin after being fixed overnight with formalin
(FFPE). The method of preservation will affect the choice of suitable
techniques available to study the molecules present in these com-
plex and heterogeneous materials.

When looking at solid cancer tissues, another important distinc-
tion with regard to the most optimal sample can be made between
primary tumor and metastases. As discussed before, tissue hetero-
geneity is a natural consequence of processes within a tumor such
as clonal selection and genomic instability. These processes, and
importantly also the process of epithelial-to-mesenchymal transi-
tion (EMT) which tumor cells are thought to undergo upon enter-
ing the blood stream, lead to discrepancies between the primary
tumor tissue and corresponding metastases. Especially when much
time has passed and systemic anti-tumor therapy has been admin-
istered, the latter of which might lead to selection of resistant cell
populations, these discrepancies can have direct clinical conse-
quences. Recently, many studies have focused on this heterogene-
ity between primary tumor and metastases, and single-cell
sequencing has revealed the complexity of tumor evolution [4,5].
These differences between primary tumors, which are now most
often used for biomarker analysis, and metastases, which pose
the biggest threat to the patient, probably means that determining
prognostic and predictive factors on metastatic lesions leads to
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better treatment decisions. The marked heterogeneity even within
a metastatic lesion, however, also raises the question whether met-
astatic biopsies truly reflect the patient’s tumor load. In this sense,
circulating tumor cells, which are thought to be aggressive tumor
cells representing metastatic lesions, are a promising alternative
(see Section 4.3).

Besides solid tissues, which are notoriously composed of multi-
ple cell types, several types of liquid samples are available for re-
search and clinical diagnostics, such as blood, bone marrow,
urine, saliva, central spinal fluid (CSF), pleural effusion samples
(PES), peritoneal effusion samples (ascites) and amniotic fluid sam-
ples (AFS). Despite their usually less complex nature, fluidic sam-
ples too contain multiple cell types, influencing the types of
analysis that can be done on these samples.

Below, we will discuss the different available methods to isolate
cell populations from heterogeneous samples, divided into those
available for solid and liquid samples.

4. Isolating individual cell types from heterogeneous material

Separation of cells requires the removal of one cell type from
another by physical means. Depending on the type of the sample,
there are several methods available to separate cells.

4.1. Solid tissues

4.1.1. Physical tissue separation

In order to select for specific cell populations in heterogeneous
tissues, several microdissection techniques have been described.
Most techniques involve the use of a needle to scrape off cells of
interest under direct microscopic visualization [85,86]. This method,
however, tends to be slow, tedious and highly operator dependent
[87].In 1992, Shibata and coworkers described a new method for cell
isolation. They used a specific pigment placed over small numbers of
cells in a tissue section, which served as an umbrella preventing the
covered cells from being destroyed by the ultraviolet light which
was used to destroy the DNA/RNA of the uncovered cells [88].
Shortly later, laser capture microdissection under direct microscopic
visualization was developed by Liotta and coworkers in the National
Cancer Institute (NCI). This way of target cell isolation permits rapid,
reliable laser microdissection to collect specific cell populations
from a section of complex, heterogeneous tissue [89]. There are sev-
eral membranes and caps used with laser capture microdissection
(LCM) [90]. Dependent on the microlaser dissection device used,
the collection caps used are positioned in different ways. LCM is
compatible with a variety of cellular staining methods and tissue
preservation protocols [91], making LCM a powerful method to pro-
cure subpopulations of tissue cells under direct microscopic visual-
ization. This technology can harvest the cells of interest directly or
can isolate specific cells by cutting away unwanted cells to give his-
tologically pure enriched cell populations [92]. The LCM process
does not alter or damage the morphology and chemistry of the
sample collected, nor of the surrounding cells. For this reason, it is
a useful method to collect selected cells for DNA, RNA and/or protein
analyses [93]. In addition, it is specific enough to dissect single cells
and - with proper measures taken - can yield good quality samples.
The collection of large quantities of cells by LCM is a time consuming
procedure requiring the microscopical visualization of the cells of
interest in a stained tissue sections before lasering [90].

One of the recently most used LCM devices is the PALM micro
laser dissector (P.A.L.M. Microlaser Technologies AG, Bernried, Ger-
many) (Fig. 2).

4.1.2. Enzymatic & mechanical tissue disruption
This method includes disturbing the extracellular matrix and
cell adhesion components without harming the integrity of cell
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Fig. 2. P.ALLM. laser capture micro-dissection technique. The PALM provides a
powerful separation technique, in which the laser microbeam microdissection
(LMM) combined with laser pressure catapulting (LPC) is an important improve-
ment over the more traditional UV-laser based cutting techniques [146]. Further-
more, specific glass slides covered with a polyethylene naphthalate (PEN)
membrane aid in stabilizing the morphological integrity of the captured area
[147]. In this method, collecting caps do not make contact with the tissue sections,
which increases the flexibility with respect to section preparation [148].

membrane. This technique needs a combination of various enzyme
mixes, mechanical forces, incubation periods and temperatures
[94]. Nowadays, there are several robust instruments available
on the market to enable the effective disruption and homogeniza-
tion of samples. This step is usually followed by enrichment with
magnetic beads covered with an antibody that recognizes the cells
of interest [95]. Alternatively, the mechanical disruption and sepa-
ration of cells may be followed by flow cytometric classification of
cells based on antigen expression [96]. This approach enables the
isolation of high quality RNA, DNA and proteins.

4.2. Liquid samples

Liquid samples like urine, blood or bone marrow don’t need
mechanical disruption. Depending on the sample type, an enrich-
ment step usually precedes the detection method of choice. We
will discuss various options for enrichment of specific cell types
and their subsequent detection in liquid samples, using circulating
tumor cells (CTCs) as a final example.

4.2.1. Differential centrifugation

Differential centrifugation is a very common enrichment proce-
dure of separation based on size and density, with larger and den-
ser particles pelleting at lower centrifugal forces. This technique
enables the enrichment for some cellular components like nuclei,
mitochondria, ribosomes and others, thus, extracting the specific
genetic material from each component separately. It is however
associated with significant cell loss, which, in the analysis of rare
cell populations, can be a serious disadvantage.

4.2.2. Density gradient separation

This is one of the best established cell separation techniques. It
is performed by cell density gradient centrifugation on a ficoll-
hypaque solution. This method was developed in 1968 by Bgyum,
using low viscosity Ficoll and sodium metrizoate of the proper den-
sity and osmotic strength, to isolate mononuclear cells [97]. Later,
sodium metrizoate has been successfully substituted with sodium
diatrizoate [98]. The basis for this cell separation assay is the differ-
ential migration of cells during centrifugation according to their
buoyant density, which results in the separation of different cell
types into distinct layers [99] (Fig. 3).

One of the advantages of this method, besides its speed and low
cost, is the separation of erythrocytes by the porous barrier plug,
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Fig. 3. Density gradient separation. An example of the different cell layers obtained
after density gradient separation of a whole blood sample. The red cell pellet,
including the granulocytes, is separated from the lymphocytes by the ficoll-
hypaque layer. The top layer consists of plasma and platelets, which can be
distinguished based on its clarity as compared to the lymphocyte layer [149].

which makes it easy to separate the nucleated cells of interest.
However, like differential centrifugation, it is associated with some
loss of cells.

4.2.3. Filtration

This physical separation method is based on using filters with
specific pores that separates cells of interest from other cells based
on their size. Tumor cells are presumed to generally be bigger in
size than other peripheral blood mononuclear cells (PBMCs), and
are thus trapped on top of the filter while the other cells are al-
lowed to pass through [100]. While the big advantage of these
size-based methods is the circumvention of the need for a marker
that is expressed on all cells of interest, also cell size can be heter-
ogeneous among the cell population of interest. One method based
on filtration as an enrichment step for CTCs is further explained in
Section 4.3 and Fig. 4.

4.2.4. Antibody-based separation

Antibody-based separation relies on the expression of specific
antigens on the cell surface or within the cytoplasm of cells of
interest. This is a good and powerful method because of the great
diversity and specificity of antibodies, but its success depends
completely upon the choice of antibodies. The expression of a
cell-specific antigen can be used to separate antibody-bound cells
from other cells by immunomagnetic enrichment or depletion. By
addressing multiple, putatively differentially expressed targets,
this can result in a simultaneous enrichment based on different
antigens such as in the AdnaTest (AdnaGen AG, Laggenhagen,
Germany), thereby increasing the sensitivity of this enrichment
step. The actual immunomagnetic enrichment step can be manual
in a hand-held magnet, or semi-automated such as in the
CellSearch technique (Veridex LLC, Raritan, NJ) (see below).

The cell-specific expression of certain antigens can also
be employed in flow cytometry assisted cell sorting (FACS),
which allows for simultaneous separation of various specific cell

populations through the combination of several fluorescently-
labeled antibodies.

4.3. Circulating tumor cells

As an example for the intricate combination of highly sensitive
enrichment and extremely specific detection techniques to isolate
rare cells from a heterogeneous cell population, we will now focus
on methods available for the isolation of circulation tumor cells
(CTCs).

CTCs are cancer cells that have detached from a solid tumor and
entered into the bloodstream. They have for a long time been con-
sidered a promising biomarker enabling repeated and non-invasive
assessment of prognostic and possibly predictive factors. As a re-
sult, many attempts have been made to develop assays that can
reliably detect and enumerate CTCs, but only recently such assays
have become available on the market. The first clinical results ob-
tained with such assays strongly suggest that in a variety of tumor
types, including breast, colorectal, prostate and lung, CTC enumer-
ation can be used to predict prognosis, and a second CTC count can
serve as an early marker to assess anti-tumor activity of a given
treatment [101]. The detection of CTCs remains extremely chal-
lenging due to their low number in the blood as compared to
PBMCs; median CTC count in metastatic disease ranges from 3 to
5 cells per 7.5 mL blood, underlining the need for technologically
advanced assays.

So far, the CellSearch™ is the only assay that is approved by the
US Food and Drug Administration (FDA) for use as a prognostic
marker in metastatic breast, colorectal, lung and prostate cancer.
In this semi-automated method, CTCs are isolated from whole
blood by immunomagnetic enrichment using ferrofluids coated
with antibodies against epithelial cell adhesion molecule (EpCAM).
Subsequently, the isolated cells are stained with fluorescently-la-
beled monoclonal antibodies targeted against cytokeratins (CK) 8,
18 and 19, selecting for epithelial cells, CD45 to exclude leucocytes
and a nuclear staining dye (DAPI), and enumerated using a semi-
automated fluorescence microscope. In this method, CTCs are de-
fined as nuclear cells expressing CK 8, 19 or 19 and lacking CD45
expression [102]. The prognostic value of CTCs as enumerated by
CellSearch has clearly been shown, but due to the nature of the as-
say, i.e., selection based on epithelial-specific markers, improve-
ments in the sensitivity of this assay are most likely possible. In
our own work, we have demonstrated that breast cancer cells of
the normal-like subtype lack EpCAM expression and are thus
missed using the conventional CellSearch technique [9], a problem
that can for the most part be overcome by adding CD146 as an
enrichment marker [103]. For the purposes of CTC characterization,
CTCs can also be isolated from whole blood using only the EpCAM-
based immunomagnetic enrichment step from CellSearch without
further staining. While this enrichment enables the large-scale
gene expression analysis of CTCs [78,104], up to a thousand back-
ground leukocytes are still present [104]. This requires a careful
selection of CTC-specific genes that are preferentially not at all or
else much lower expressed by leukocytes [78,104].

We will now discuss some of the more prominent new alterna-
tive CTC detection techniques. A complete overview would be be-
yond the scope of this review, and we refer to Mostert et al. for a
more elaborate discussion of currently available detection tech-
niques [105].

EPISPOT is an immunological assay derived from the enzyme-
linked immunosorbent assay (ELISPOT) [106]. Before detection of
CTCs, leukocyte content is minimized through immunomagnetic
anti-CD45-based depletion and tumor cells are selected based on
CXCR4-expression. CXCR4 is a chemokine receptor involved in
the homing of metastatic tumor cells, and is thought to be ex-
pressed on CTCs. EPISPOT then detects specific proteins released
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Fig. 4. Overview of cell-based (top panel) and nucleic-acid based (bottom panel) methods currently in use for the detection of CTCs. Adapted from Mostert et al. [105]; lower
part of the figure published with permission of Abnova [<http://www.abnova.com/system/captor.asp>].
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by viable CTCs, such as Cathepsin-D or Mucin-1, leading to an enu-
meration of only viable cells. Unfortunately, this method does not
enable morphological confirmation of CTCs and, like CellSearch,
depends on the extent to which the markers used are expressed
or released by all CTCs.

The CTC-chip is one of a few available methods based on the
attachment of monoclonal antibodies to microposts on a chip
[107]. Results have been described for the CTC-chip with micro-
posts coated with EpCAM [108] and with PSA antibodies [109].
The advantage of this method is the controlled flow by which
whole blood is pumped across the chip, increasing the possibility
of a CTC to bind to one of the 78,000 microposts on the chip. After
binding of CTCs to the microposts, they are stained against CKs and
DAPI for positive selection and CD45 for negative selection.
Remarkably high CTC counts were described with this method as
compared to other EpCAM-based methods, which have thus far
unfortunately not been reproduced. Because EpCAM has been de-
scribed not to be expressed on all breast cancer subtypes [9], cau-
tion is needed when interpreting these results.

In an effort to circumvent the need for a marker expressed on all
tumor cells, numerous assays have been described using dielectro-
phoresis to select CTCs [110,111]. These methods exploit the intrin-
sic properties of tumor cells; most notably the cell membrane
capacitance, a measure of plasma membrane area, and conduc-
tance. These unique properties cause tumor cells to transit the as-
say chamber at different speeds, and separate them from other
blood cells. While assay sensitivity might not be optimal with these
methods and current assays are limited to low blood volumes, their
crucial advantage is the absence of any specific enrichment
or detection markers and their ability to obtain viable tumor cells.
However, morphology too can be heterogeneous among cells of
interest. Indeed, circulating tumor cells have been described to vary
in size, some not exceeding the size of PBMCs, and these PBMC-
sized CTCs were also prognostic in prostate cancer patients [112].

A new device to detect CTCs is the Captor™ device, which filters
tumor cells from other PBMCs based on their bigger size and lesser
deformability, and then selects these cells based on EpCAM and
DAPI expression in the absence of CD45 expression. This method
does not require permeabilization of cells, which is needed for
cytokeratin staining, and thus viable CTCs are retrieved. High isola-
tion purity was obtained with this method in cell line spiking
experiments [113], but the added value of this method in patient
samples remains to be elucidated.

The presence of CTCs, or nucleic acids derived from CTCs, can
also be detected and quantified in blood with molecular tech-
niques such as PCR, real-time quantitative reverse transcriptase
PCR (qRT-PCR) [113] or fluorescence in situ hybridization (FISH)
[114], methods based on the detection of (epi)genetic alterations
that are specific for cancer cells. The differential expression of
specific mRNAs [113] or presence of oncogenic mutations [115]
can thus be identified in whole blood or plasma. In these meth-
ods, high specificity is even more crucial than in cell-based meth-
ods, as morphological confirmation of CTCs is not possible. This
specificity can be obtained by first selecting only tumor cells
based on a powerful enrichment step and/or by carefully selecting
genes of interest based on the absence of their expression on
PBMCs. By enriching for EpCAM-positive cells and measuring only
epithelial-specific genes, we have thus for example succeeded in
measuring 55 breast cancer CTC-specific mRNAs and 10 breast
cancer CTC-specific miRNAs in as little as one cell per 7.5 mL
blood [113].

5. Biomarker detection in heterogeneous samples

Biomarkers can be found in a variety of fluids and tissues.
Genomic and proteomic technologies have greatly increased the

number of potential DNA, RNA and protein-related biomarkers
under investigation. A paradigm shift has recently been realized,
whereby single-biomarker analysis is being replaced by multi-
parametric analysis of genes or proteins as a molecular signature.
In relation to tumor heterogeneity, these molecules can be pro-
duced either by the epithelial (tumor) cells themselves, or by cells
present in the surrounding tissue like the stroma. In the case of
stroma, molecules comprising tumor-specific signatures can be
expressed in response to the presence of cancer or due to other
biological conditions, such as inflammation. An ideal tumor
marker should be easily, reliably and cost-effectively measurable
by use of an assay with high analytical sensitivity and specificity
[116]. However, despite numerous efforts, only a few markers in a
limited number of cancer types have been able to meet those
stringent conditions and have successfully entered routine daily
practice.

Currently, most biomarkers with clinical applications include
either genetic or proteomic markers [117]. The development of
new technologies, such as gene expression profiling, proteomic ap-
proaches and next generation sequencing technologies, in combi-
nation with in situ hybridization and immunohistochemistry,
have enabled researchers to screen the whole genome, proteome,
transcriptome and metabolome for new biomarker discovery and
validation in (tumor) tissue, serum, plasma, or other human body
fluids [116]. We will now discuss the specifications, limitations
and applications of some of these biomarker discovery techniques,
with a focus on the analysis of small samples down to the one cell
level.

5.1. Genomics

5.1.1. (Quantitative) RT-PCR

With a long history at the single biomarker level, (q)RT-PCR is
generally considered the ‘gold standard’ against which other meth-
ods are validated. QRT-PCR is a suitable technique even for a single
cell that contains ~25 pg total RNA, comprising ~0.5 pg mRNA,
which is equivalent to ~500,000 mRNA’s of average size. This tech-
nique is relatively easy, reliable and quantitative. It is splited into
two major steps. The first step requires a highly sensitive reverse
transcription followed by an accurate step of amplification with a
wide dynamic range (1000-fold differences can be measured),
and can be highly reproducible [119]. In addition, with (q)RT-PCR
one can simultaneously measure the expression of multiple genes
in a multitude of single-cell samples. However, qRT-PCR data con-
stitute only a snapshot of information regarding the quantity of a
given transcript in a cell or tissue. Any assessment of the biological
consequences of variable mRNA levels must include additional
information regarding regulatory RNAs, protein levels and protein
activity [119]. For this, new technologies are now fortunately avail-
able in this era of high throughput profiling by micro-array and
deep sequencing technologies.

5.1.2. Micro-arrays

During the past decade, the most successful and widely used
whole transcriptome analysis method for large-scale biomarker
discovery was the cDNA microarray [120-122]. Genomic micro-
arrays represent a highly powerful technology for gene-expression
studies because of their ability to analyze a multitude of genes
simultaneously in one sample. Microarray experiments are usually
performed with DNA or RNA isolated from tissues, which are la-
beled with a detectable marker and allowed to hybridize to arrays
comprised of gene-specific probes that represent thousands of
individual genes in order to assess the relative gene expression le-
vel [123]. To meet the demand of the research community to be
able to evaluate individual cells in these heterogeneous tissues,
single-cell methods have been developed for DNA microarrays
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[124,125]. The huge amount of data per experiment requires
appropriate statistical analysis tools to discover which genes, up
or down regulated, might be considered as potential biomarkers.
In cancer research, unsupervised and supervised hierarchical clus-
tering algorithms are the most frequently used tools to generate
gene signatures, which are then capable of classifying tumors
based on predefined clinical information [126].

One of most successful examples of gene-array technology is
the classification of breast cancer into prognostic categories depen-
dent on the expression of certain genes [37,42]. Studies showing
the ability of a 70-gene-panel measured by microarray to predict
survival in primary breast cancer patients led to the development
of MammaPrint® (Agendia, Amsterdam, The Netherlands) [37].
This panel became the first multigene panel test to be approved
by the FDA for predicting breast cancer relapse in February 2007.
Another multigene signature, Oncotype DX® (Genomic Health,
Redwood City, CA), based on qRT-PCR of 16 cancer-related genes
and 5 reference genes has been commercially available since
2004 for a similar use; predicting the recurrence of tamoxifen-trea-
ted, node-negative breast cancer [58]. The true value of these sig-
natures will be elucidated in two studies assessing the prognostic
value of Oncotype DX and MammaPrint prospectively, and these
results are awaited before a definitive implementation into the
clinic can be initiated. Nonetheless, over the past decade, there
has been a tremendous growth in the application of the gene-
expression array technology, resulting in the classification of
breast cancer according to intrinsic subtypes [16], insights into
cancer pathogenesis, and the discovery of a large number of diag-
nostic markers [127].

5.1.3. RNA sequencing

Despite these promising studies, DNA microarray technology
has significant limitations [128], including (1) cross-hybridization
between genes of similar sequence; (2) not all genes are reliably
detectable, especially those with a low expression level; (3) lack
of information about the exact length and sequence of the mRNAs
being analyzed; and (4) the inability to detect novel transcripts. In
most gene-expression studies, microarrays are now being replaced
by RNA sequencing (RNA-Seq) based methods which directly
determine the complete cDNA sequence and can be used to iden-
tify and quantify mRNA transcripts, non-coding RNAs, small RNAs,
splicing patterns and other post-transcriptional modifications. This
technology can also provide information about mutations, inser-
tions, deletions, SNPs, copy number variation and chromosome
rearrangements [128,129], thereby greatly increasing the informa-
tion obtained from a tumor sample as compared to microarray
technologies.

The RNA-Seq procedure is simple and requires only small
amounts of nucleic acid material (~100 ng of total RNA), but gen-
erates an immense quantity of data. It has a large dynamic range
and high sensitivity, and can unequivocally identify splicing and
RNA editing products as well as allele-specific transcripts [128].
Additionally, with the current second generation sequencing tech-
nologies, we can easily determine the polarity of the transcripts,
which is important given the fact that many genomic regions give
rise to transcripts from both strands [130-133]. This problem has
now been solved with the use of smart protocols for strand-specific
RNA sequencing [134], which can be used in combination with the
different platforms available in the market like SOLID, Illumina,
and Roche 454. In the future, these RNA-seq protocols need to be
updated to be used by the third generation sequencers which
aim to increase throughput and decrease the time to result and
cost, like the Ion Torrent or Pacific Bioscience platforms. At the
analysis side, progress can be made by simplifying the statistical
analysis of these huge amounts of data through the generation of
new algorithms and software packages. Altogether, because of its

high-quantity and high-quality data output, RNA-Seq will defi-
nitely contribute to the discovery of new biomarkers. Additionally,
previously described biomarkers can be reliably validated on large
scale data sets for validation.

Fig. 5 shows a representative example of EpCAM strand specific
RNA-sequencing of both fresh frozen (FF) and FFPE SKBR-3 breast
cancer cell line cells. Gene expression levels are expressed in reads
per kilobase of exon model per million mapped reads (RPKM). The
RPKM measure of read density reflects the molar concentration of a
transcript in the starting sample by normalizing for RNA length
and for the total number of reads in the measurement [133]. RPKM
values for EpCAM were very comparable in both samples, under-
lining the ability to use both fresh frozen and FFPE samples in this
assay. To validate the RNA-seq expression data, we compared these
results with data we obtained with the WG-DASL (Whole-Genome
cDNA-mediated Annealing, Selection, Extension and Ligation) as-
say, an assay specifically equipped to measure transcripts in highly
degraded material such as FFPE. Using the data obtained with the
EpCAM Illumina probe ILMN_2160209 on RNA isolated from both
FF and FFPE material of the SKBR-3 cells, results for these two sam-
ple types and methods to evaluate transcript levels, were very
comparable.

5.1.4. Single-cell analysis

In complex tissues, heterogeneity may indicate the presence of
specialized cell types or originate in the random nature of the tran-
scription machinery [135,136]. The above described technologies
in the “omics” era produce a large number of possible biomarker
candidates, which require proper validation before clinical applica-
tion. It is in fact the large heterogeneity between and within
individual tumors, together with highly variable expression levels
across the human population, which makes the validation of these
biomarkers extremely challenging. To overcome this issue,
researchers can now decide to isolate the separate cell populations,
down to the one cell level, which increases assay specificity but
does demand a higher sensitivity of the techniques. Furthermore,
when purifying DNA and RNA from very few cells, the issue of sto-
chastic variation becomes important. For example, if 10 cells are
processed, and DNA is eluted in 25 pL, there will be less than 1
copy of each genomic DNA allele per micro liter. Similarly, some
RNA transcripts may be present at very low copy numbers per cell,
or only in a fraction of all cells in the sample of interest.

As mentioned before, a typical single cell contains ~0.5 pg
mRNA, which is equivalent to a few hundred thousand molecules
transcribed from about 10,000 genes [118]. qRT-PCR is a suitable
technique for single-cell gene expression because it has a wide dy-
namic range (1000-fold differences can be measured), is highly
reproducible and can simultaneously measure the expression of
multiple genes in a multitude of single-cell samples. Multiplexed
mRNA expression analysis with single-cell resolution is also possi-
ble using FISH, which has the additional benefit of enabling mor-
phological analysis, but the degree of multiplexing is generally
limited to 3-5 targets [137]. As an alternative approach, single-cell
methods have been developed for DNA microarrays [124,125] fol-
lowed by single-cell RNA-seq technologies to successfully analyze
a single cell transcriptome [138-140]. Recently for example, Xu
et al.,, published results of a single-cell exome sequencing experi-
ment from a renal cell carcinoma patient, aiming to better under-
stand the intratumoral genetic underlying mutations of this tumor
[141]. They carried out exome sequencing of 25 single cells from
the tumor and adjacent noncancer kidney tissue. They were able
to cover 100% of the exons of the VHL and PBRM1 genes, which
are the most commonly mutated genes in renal cell carcinoma.
The new technique facilitated to conclude the cancer in that pa-
tient was unlikely to be related to the presence of VHL and PBRM1
mutations and would most likely not benefit from a therapy
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Fig. 5. UCSC genome browser EpCAM read counts form formalin fixed and paraffin embedded (FFPE) and fresh frozen (FF) SKBR-3 breast cancer cell line. After rRNA depletion
and RNA fragmentation of 100 ng of total RNA, cDNA was generated by random priming following the strand specific protocol. Then, the cDNA was converted into a molecular
library for the Illumina GAXII by a single end sequencing protocol, after which the resulting 35-bp reads were mapped onto the reference genome hg18. The gene expression
data given by the RPKM values were comparable between both samples, and compared well with the gene expression data as measured by the EpCAM ILMN_2160209 probe

included on the WG-DASL chip.

targeted against these mutations. Therefore, they concluded, inves-
tigating other genetic mechanisms that may underlie this type of
renal cell carcinoma may lead to new ways to investigate individ-
ual tumors, with the aim of developing more effective cellular tar-
geted therapies.

5.2. Biomarker validation and heterogeneity

In complex tissues, heterogeneity may indicate the presence of
specialized cell types or originate in the random nature of the tran-
scription machinery [135,136]. The above described technologies
in the “omics” era produce a large number of possible biomarker
candidates, which require proper validation before clinical applica-
tion. One method to validate the precise localization of putative
biomarkers within an heterogeneous tissue is to make use of tissue
microarrays (TMA). TMAs are arrays of core biopsies obtained from
FFPE tissues and can thus provide high-throughput gene (by in situ
hybridization) or protein expression analysis of large cohorts of
cancer patients on a single slide. Some biomarkers have already
been validated in colon cancer and breast cancer using this prom-
ising technology [142,143]. While the major advantage of TMA is
that analysis of tumors from many different patients with different
stages of disease can be performed simultaneously, the major
drawback of this technique is that, because of the small punch size,
TMAs may not demonstrate tumor heterogeneity, which can com-
monly be estimated in whole section mounts. Therefore, the choice
of the tumor area is pivotal and, in the case of widely heteroge-
neous tumor, like prostate and breast cancer, numerous punches
may be necessary [144].

It is in fact the large heterogeneity between and within individ-
ual tumors, together with highly variable expression levels across
the human population, which makes the validation of these
biomarkers extremely challenging. In breast cancer, HER-2 overex-
pression for example is a predictive marker of tumor aggressive-
ness and therapy response. In advanced and metastatic breast
patients HER-2 overexpression identifies the subset of patients
who can benefit from trastuzumab. In general HER-2 is measured
in the primary tumor, even if the metastases appear several years
later. There are several studies that demonstrate widely discordant
rates in HER-2 overexpression between the primary tumor and
metastases of the same breast cancer, emphasizing the existence

of biological differences between primary tumors and their metas-
tases. Thus, evaluation of HER-2 in metastatic sites, especially
when the primary tumor was negative, can improve trastuzumab
benefits in HER-2 positive metastatic breast cancer patients [145].

To overcome these issues, researchers can now decide to isolate
the separate cell populations, down to the one cell level. This
increases assay specificity, but does demand a higher sensitivity
of the techniques. Furthermore, when purifying DNA and RNA from
very few cells, the issue of stochastic variation becomes important.
For example, if 10 cells are processed, and DNA is eluted in 25 pL,
there will be less than 1 copy of each genomic DNA allele per micro
liter. Similarly, some RNA transcripts may be present at very low
copy numbers per cell, or only in a fraction of all cells in the sample
of interest.

6. Key issues, pitfalls and challenges

Heterogeneity touches the very essence of cancer as a disease; it
is caused by its inherent genomic instability and the presence of
specific cell types, and is an important factor in the lack of uniform
response to anti-tumor treatment seen in cancer patients. It is this
heterogeneity that sparks the need for reliable prognostic biomark-
ers to distinguish patients needing aggressive therapy from those
benefitting more from a wait-and-see approach and predictive bio-
markers to select patients most responsive to a certain targeted
treatment. Conversely, the same heterogeneity complicates the
identification of such prognostic and predictive biomarkers from
tumor tissue, fluid samples or circulating tumor cells.

Especially in heterogeneous and progressive diseases such as
cancer, cells in vivo do not always adhere to the rules that were fol-
lowed when the specificity of the marker was evaluated. Therefore,
the use of only one biomarker to identify and quantify specific cells
in a tissue or fluid is likely to be prone to under- or overestimation
of the contribution of the cell type.

When a search for a new biomarker is initiated, it is crucial to
predefine the kind of information it should give, in what patient
population and at which time point in the course of the disease
it can be used and what criteria should be met in terms of assay
sensitivity and specificity. For instance, it is impossible to look
for a reliable prognostic factor in a heterogeneously treated patient
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population, just like it is extremely challenging to look at rare
stem-cell like features in cell populations without a sensitive
enrichment step.

Much progress has been made in the ability to select cell popu-
lations of interest from a larger heterogeneous cell population,
both in solid tissues by laser microdissection and by size-, den-
sity-, or antibody-based enrichment in fluid samples and CTCs.
These enrichment steps can be followed by sensitive high-through-
put genomics and proteomics detection methods such as cDNA
microarray, qRT-PCR, RNA-sequencing, mass spectrometry and
PLA. While all very sophisticated, the success of these assays relies
completely upon the correct choice of biomarker, i.e., a biomarker
that is sensitive and specific enough for the cell population of
interest.

It is only by further classifying patient populations as well as
individual tumor samples into distinct subtypes that we can move
forward towards our aim of patient- and tumor-tailored treatment,
and it is of the utmost importance that researchers take into
account the effect of tumor and patient heterogeneity in their
research questions.
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