REAL TIME PCR

USING SYBR GREEN

THE PROBLEM

- NEED TO QUANTITATE DIFFERENCES IN mRNA EXPRESSION
- SMALL AMOUNTS OF mRNA
- LASER CAPTURE
- SMALL AMOUNTS OF TISSUE
- PRIMARY CELLS
- PRECIOUS REAGENTS

THE PROBLEM

- QUANTITATION OF mRNA
- northern blotting
- ribonuclease protection assay
- in situ hybridization
- PCR
- most sensitive
- can discriminate closely related mRNAs
- technically simple
- but difficult to get truly quantitative results using conventional PCR

NORTHERN
Corrected fold increase $=10 / 2=5$

Ratio target gene in experimental/control = fold change in target gene fold change in reference gene

Standards

- same copy number in all cells
- expressed in all cells
- medium copy number advantageous
- correction more accurate

Standards

- The perfect standard does not exist

Standards

- Commonly used standards
- Glyceraldehyde-3-phosphate dehydrogenase mRNA
- Beta-actin mRNA
- MHC I (major histocompatability complex I) mRNA
- Cyclophilin mRNA
- mRNAs for certain ribosomal proteins
- E.g. RPLP0 (ribosomal protein, large, P0; also known as 36B4, P0, L10E, RPPO, PRLP0, 60S acidic ribosomal protein P0, ribosomal protein L10, Arbp or acidic ribosomal phosphoprotein P0)
- 28 S or 18 S rRNA

CYCLE NUMBER	AMOUNT OF DNA
1	1
2	2
3	4
4	8
5	16
6	32
7	64
8	128
9	256
10	512
11	1,024
12	2,048
13	4,096
14	8,192
15	16,384
16	32,768
17	65,536
18	131,072
19	262,144
20	524,288
21	$1,048,576$
22	$2,097,152$
23	$4,194,304$
24	$8,388,608$
25	$16,777,216$
26	$33,554,432$
27	$67,108,864$
28	$134,217,728$
29	$268,435,456$
30	$536,870,912$
$1,073,741,824$	

CYCLE NUMBER	AMOUNT OF DNA
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1,024
11	2,048
12	4,096
13	8,192
14	16,384
15	32,768
16	65,536
17	131,072
18	262,144
19	524,288
20	$1,048,576$
21	$2,097,152$
22	$4,194,304$
23	$8,388,608$
24	$16,777,216$
25	$3,55,432$
26	$6,108,864$
27	$134,21,728$
28	$268,435,456$
29	$536,870,912$
30	$1,073,741,824$
31	$1,400,000,000$
32	$1,500,000,000$
33	$1,550,000,000$
34	$1,580,000,000$

Linear ~20 to ~1500

Linear ~20 to ~1500

REAL TIME PCR

- kinetic approach
- early stages
- while still linear

1. halogen tungsten lamp
 2a. excitation filters

20

2b. emission filters

3. intensifier
5. ccd detector 350,000 pixels
4. sample plate

Fig. 1.2. Representation of Optical Detection System layout.

```
PGR Base Line Subtracted RFU
    16000
    0246 8101214161820222426283032343630404244
                                    Cycle
```


SERIES OF 10-FOLD DILUTIONS

Temperature, Celsius

Melt Peak: Data 10-Mar-03 1259 ediopd

SERIES OF 10-FOLD DILUTIONS

SERIES OF 10-FOLD DILUTIONS

Correlation Coefficient: 0.999 Slope: -3.488 Intercept: $39.204 \mathrm{Y}=-3.488 \mathrm{X}+39.204$

- Unknowns
- Standards

PCR Standard Curve: Data 27-Jan-03 1233ileff.opd

STANDARD CURVE METHOD

PCR Standard Curve: Data 27-Jan-03 1233ileff.opd

Standard curve method

NORTHERN

fold change in target gene= copy number experimental copy number control

Real time pcr - week 1

- Two different series of diluted DNAs to do standard curve plus two unknowns
- RPLPO (ribosomal protein, reference gene)
- alpha-5 integrin
- Get standard curve and efficiency RPLP0 and alpha5 integrin
- Determine ratio of RPLP0 and alpha-5 integrin in two unknowns (cDNA 1 and cDNA 2)
- Determine melting temperature RPLP0 and alpha-5 integrin
- Each person will do either RPLP0 or alpha-5 integrin

Date: protocol:

NORTHERN

Ratio alpha-5 integrin cDNA2 to cDNA1 = fold change in alpha- 5 integrin fold change in RPLP0

Importance of controls

- negative control
- checks reagents for contamination

Importance of cleanliness in PCR

- Contamination is major problem
- Huge amplification contributes to this
- Bacterial vectors contribute to this
- Amplification of ds DNA is more sensitive than that of cDNA

PFAFFL METHOD

- M.W. Pfaffl, Nucleic Acids Research 2001 29:2002-2007

EFFECTS OF EFFICIENCY

CYCLE	AMOUNT OF DNA AMOUNT OF DNA AMOUNT OF DNA AMOUNT OF DNA
	100% EFFICIENCY 90% EFFICIENCY 80% EFFICIENCY
70%	
EFFICIENCY	

AFTER 1 CYCLE
 $100 \%=2.00 x$
 90\% = 1.90x
 $80 \%=1.80 x$
 $70 \%=1.70 x$

CYCLE AMOUNT OF DNA AMOUNT OF DNA AMOUNT OF DNA AMOUNT OF DNA 100\% EFFICIENCY 90\% EFFICIENCY 80\% EFFICIENCY 70\% EFFICIENCY

0	1	1	1	1
1	2	2	2	2
2	4	4	3	3
3	8	7	6	5
4	16	13	10	8
5	32	25	19	14
6	64	47	34	24
7	128	89	61	41
8	256	170	110	70
9	512	323	198	119
10	1,024	613	357	202
11	2,048	1,165	643	343
12	4,096	2,213	1,157	583
13	8,192	4,205	2,082	990
14	16,384	7,990	3,748	1,684
15	32,768	15,181	6,747	2,862
16	65,536	28,844	12,144	4,866
17	131,072	54,804	21,859	8,272
18	262,144	104,127	39,346	14,063
19	524,288	197,842	70,824	23,907
20	1,048,576	375,900	127,482	40,642
21	2,097,152	714,209	229,468	69,092
22	4,194,304	1,356,998	413,043	117,456
23	8,388,608	2,578,296	743,477	199,676
24	16,777,216	4,898,763	1,338,259	339,449
25	33,554,432	9,307,650	2,408,866	577,063
26	67,108,864	17,684,534	4,335,959	981,007
27	134,217,728	33,600,615	7,804,726	1,667,711
28	268,435,456	63,841,168	14,048,506	2,835,109
29	536,870,912	121,298,220	25,287,311	4,819,686
30	1,073,741,824	230,466,618	45,517,160	8,193,466

AFTER 1 CYCLE $100 \%=2.00 x$ 90\% = 1.90x $80 \%=1.80 x$ $70 \%=1.70 x$

AFTER N CYCLES:
 fold increase = (efficiency) ${ }^{\mathrm{n}}$

SERIES OF 10-FOLD DILUTIONS

Correlation Coefficient: 0.999 Slope: - 3.488 Intercept: $39.204 \mathrm{Y}=-3.488 \mathrm{X}+39.204$
PCR Efficiency: 93.5%

PCR Standard Curve: Data 27-Jan-03 1233ileff.opd

QUALITY CONTROL -EFFICIENCY CURVES

- use pcr baseline subtraction (not curve fitting default option) - see next slide
- set the threshold manually to lab standard
- check all melting curves are OK
- check slopes are parallel in log view
- delete samples if multiple dilutions cross line together (usually at dilute end of curve)
- delete samples if can detect amplification at cycle 10 or earlier
- make sure there are 5 or more points
- check correlation coefficient is more than 1.990

Xicycler

QUALITY CONTROL -EFFICIENCY CURVES

- use pcr baseline subtraction (not curve fitting default option)
- set the threshold manually to lab standard
- check all melting curves are OK
- check slopes are parallel in log view
- delete samples if multiple dilutions cross line together (usually at dilute end of curve)
- delete samples if can detect amplification at cycle 10 or earlier
- make sure there are 5 or more points
- check correlation coefficient is more than 1.990

PFAFFL METHOD

M.W. Pfaffl, Nucleic Acids Research 2001 29:2002-2007

NORTHERN

ratio $=\frac{\text { fold increase in target gene }}{\text { fold increase in reference gene }}$

AFTER N CYCLES: change $=(\text { efficiency })^{n}$
AFTER N CYCLES: ratio vit/con $=(1.93)^{29.63-18.03}=1.93^{11.60}=2053$

AFTER N CYCLES: change $=(\text { efficiency })^{n}$
AFTER N CYCLES: ratio vit/con $=(1.87)^{19.93-19.80}=1.87^{0.13}=1.08$

AFTER N CYCLES: increase = (efficiency) ${ }^{\text {r }}$
Ratio vit/con $=(1.93)^{29.63-18.03}=1.93^{11.60}=2053$

AFTER N CYCLES: increase $=(\text { efficiency })^{n}$
Ratio vit/con $=(1.87)^{19.93-19.80}=1.87^{0.13}=1.08$
ratio $=\frac{\text { change in IL1-B }}{\text { change in RPLP0 }}=2053 / 1.08=1901$
ratio $=\underline{\left(E_{\text {target }}\right)^{\Delta C t \text { target (control-treated) }}}$
$\left(E_{\text {ref }}\right)^{\Delta C t ~ r e f ~(c o n t r o l-t r e a t e d) ~}$

	A	B	[D	E	F	G	H	J	K
1		CONTROL RPLP0	CONTROL TaRGET GENE	TREATED RPLP0	TREATED target GENE	Ct CONTROL- Ct TREATED FOR TARGET GENE	PFAFFL EQUATION TOP LINE	Ct CONTROL- Ct TREATED FOR RPLPO	PFAFFL EQUATION BOTTOM LINE	RATIO TARGET GENE IN TREATEDICONTROL
2		average Ct	average Ct	average Ct	average Cl		(fold change in target gene)		(fold change in reference gene)	(corrected for internal standard)
3		20.87	23.73	20.57	22.13	1.60	2.88	0.30	1.22	2.4
4	EXCEL formula used for the data in row 3					=C-E	=PDWER(1.936,F)	= B-D	=POWER(1.943,H)	=GiJ

An example of a step-by-step way to set up the calculations for the Pfaffl method in EXCEL.
Row 3, columns B, C, D, and E are the average Ct values from real time. In separate experiments, the average efficiency for the target gene was determined to be 1.936 and for RPLP0 was 1.943

EFFICIENCY ${ }^{\Delta \Delta C t}$ METHOD

APPROXIMATION METHOD

1618202224262830323436384

$\Delta \mathrm{Ct}=$ target -ref

$$
\Delta \mathrm{Ct}=9.70
$$

$\Delta \Delta \mathrm{Ct}=11.40$ for IL1-beta

- $2{ }^{\Delta \Delta \mathrm{Ct}}$ variant: assumes efficiency is 100% Fold change $=2^{11.40}=2702$
- But our efficiency for IL1-beta is 93%
- Fold change $=1.93^{11.40}=1800$
- Pfaffl equation corrected for RPLP0 efficiency
- Fold change = 1901
 Cycle

SERIAL 10-FOLD DILUTIONS

RED: 83\% efficiency
PURPLE: 93\% efficiency
PCR Amplification vs Cycle: Data 28-Aug-02 1113.opd

EFFICIENCY
 METHOD

- assumes
- minimal correction for the standard gene, or
- that standard and target have similar efficiencies
- $2{ }^{\Delta \Delta C t}$ variant assumes efficiencies are both 100%
- approximation method, but need to validate that assumptions are reasonably correct - do dilution curves to check Δ Cts don't change
- The only extra information needed for the Pfaffl method is the reference gene efficiency, this is probably no more work than validating the approximation method

Real time pcr - week 2

- Two different cDNAs derived from cells which have undergone control or vitreous treatment
- Do levels of alpha-5 integrin change relative to RPLPO?
- Calculate according to Pfaffl method

RNA from control RPE cells

RNA from TGF-b treated RPE cells

cDNA from control RPE

五

OVERVIEW

tissue
\downarrow
extract RNA
\downarrow
copy into cDNA
(reverse transciptase)
\downarrow
do real-time PCR
\downarrow
analyze results

OVERVIEW

IMPORTANCE OF RNA QUALITY

- Should be free of protein (absorbance 260nm/280nm)
- Should be undegraded (28S/18S ~2:1)
- Should be free of DNA (DNAse treat)
- Should be free of PCR inhibitors
- Purification methods
- Clean-up methods

OVERVIEW

tissue
\downarrow
extract RNA
+
copy into cDNA
(reverse transciptase)
\downarrow
do real-time PCR
\downarrow
analyze results

Importance of reverse transcriptase primers

- Oligo (dt)
- Random hexamer (NNNNNN)
- Specific

REVERSE TRANSCRIPTION

- adds a bias to the results
- efficiency usually not known

OVERVIEW

tissue
\downarrow
extract RNA
\downarrow
copy into cDNA
(reverse transciptase)
do real-time PCR
\downarrow
analyze results

Importance of primers in PCR

- specific
- high efficiency
- no primer-dimers
- Ideally should not give a DNA signal
- cross exon/exon boundary

EXON 1

INTRON 2
EXON 2
DNA

EXON 1

EXON 2
RNA

How are you going to measure the PCR product

- Directly
- Sybr green
- Quality of primers critical
- Indirectly
- In addition to primers, add a fluorescently labeled hybridization probe
- Many different approaches to this, see Bustin J.Mol.Endocrinol. (2000) 25:169

Importance of controls

- negative control (no DNA)
- checks reagents for contamination
- no reverse transcriptase control
- detects if signal from contaminating DNA
- positive control
- checks that reagents and primers work
- especially importance if trying to show absence of expression of a gene

Standards

- same copy number in all cells
- expressed in all cells
- medium copy number advantageous
- correction more accurate
- reasonably large intron
- no pseudogene
- no alternate splicing in region you want to PCR

RNA from control RPE cells

RNA from TGF-b treated RPE cells

cDNA from control RPE

五

RNA from control RPE cells

cDNA from control RPE

No RT for control RPE (to see if any genomic DNA signal)

RNA from TGF-b treated RPE cells

cDNA from TGF-b treated RPE cells

No RT for TGF-b treated RPE
(to see if any genomic DNA signal)
? Is there any change in a5-integrin expression ?

THE REVERSE TRANSCRIPTION REACTIONS HAVE BEEN DONE FOR YOU

- reactions done as 20 ul reactions with oligo (dT) as primer and 1 ug total RNA
- reactions done under oil
- reactions were incubated 1 hr 37 C , then diluted to 150 ul with water, and incubated in a boiling water bath for 10 mins
- You will use 5uL of this diluted cDNA in your reactions

Date: protocol:

SPECIAL THANKS TO

- Dr. Joyce Nair-Menon and Lei Li for the use of their real-time PCR results
- Anyone who has ever discussed their realtime PCR results with me
- NEI - EY12711 for the money

