Measuring Gene Expression

David Wishart Bioinformatics 301 david.wishart@ualberta.ca

Looking at Genes

- Where? (where are genes located?)
 - Genes are located using gene finding programs (Glimmer, Genscan, GRPL)
- What? (what do these genes do?)
 - Genes are characterized using gene annotation tools (Pedant, Magpie, etc.)
- How Many? (how abundant are they?)
 - Gene expression is measured experimentally using SAGE or gene chips

Different Kinds of "Omes"

- Genome
 - Complement of all genes in a cell, tissue, organ or organism
- Transcriptome
 - Complement of all mRNA transcripts in a cell, tissue, organ or organism
- Proteome
 - Complement of all proteins in a cell, tissue, organ or organism

Different Kinds of "Omes"

The Measurement Dichotomy

High Throughput Measurement

-Omics Mania

biome, CHOmics, cellome, cellomics, chronomics, clinomics, complexome, crystallomics, cytomics, cytoskeleton, degradomics, diagnomicsTM, enzymome, epigenome, expressome, fluxome, foldome, secretome, functome, functomics, genomics, glycomics, immunome, transcriptomics, integromics, interactome, kinome, ligandomics, lipoproteomics, localizome, phenomics, metabolome, pharmacometabonomics, methylome, microbiome, morphome, neurogenomics, nucleome, secretome, oncogenomics, operome, transcriptomics, ORFeome, parasitome, pathome, peptidome, pharmacogenome, pharmacomethylomics, phenomics, phylome, physiogenomics, postgenomics, predictome, promoterome, proteomics, pseudogenome, secretome, regulome, resistome, ribonome, ribonomics, riboproteomics, saccharomics, secretome, somatonome, systeome, toxicomics, transcriptome, translatome, secretome, unknome, vaccinome, variomics...

http://www.genomicglossaries.com/content/omes.asp

Why Measure Gene Expression?

- Assumption that more abundant genes/transcripts are more important
- Assumption that gene expression levels correspond to protein levels
- Assumption that a normal cell has a standard expression profile/signature
- Changes to that expression profile indicate something is happening

Why Measure Gene Expression?

- Gene expression profiles represent a snapshot of cellular metabolism or activity at the molecular scale
- Gene expression profiles represent the cumulative interactions of many hard to detect events or phenomena
- Gene expression is a "proxy" measure for transcription/translation events

mRNA level = Protein level?

- Gygi et al. (1999) Mol. Cell. Biol. compared protein levels (MS, gels) and RNA levels (SAGE) for 156 genes in yeast
- In some genes, mRNA levels were essentially unchanged, but protein levels varied by up to 20X
- In other genes, protein levels were essentially unchanged, but mRNA levels varied by up to 30X

SAGE vs. 2D Gel

mRNA level = Protein level?

mRNA level = Protein level?

- Griffen TJ et al. (2002) Mol. Cell. Proteomics 1:323-333
- Compared protein levels (MS, ICAT) and RNA levels (microarray) for 245 genes in yeast on galactose/ethanol medium
- "Significant number of genes show large discrepancies between abundance ratios when measured at the levels of mRNA and protein expression"

Microarray vs. ICAT

mRNA Protein

mRNA vs. Protein levels

mRNA vs. Protein levels

Why Do It?

It's easier to do than the other measurements

How Relevant are RNA Levels to Protein Levels?

Measuring Gene Expression

- Differential Display
- Serial Analysis of Gene Expression (SAGE)
- Rapid Analysis of Gene Expression (RAGE)
- RT-PCR (real-time PCR)
- Northern/Southern Blotting
- DNA Microarrays or Gene Chips

Differential Display (DD)

Basic idea:

- Run two RNA (cDNA) samples side by side on a gel
- Excise and sequence bands present in one lane, but not the other

The clever trick:

 Reduce the complexity of the samples by making the cDNA with primers that will prime only a subset of all transcripts

Differential Display

Differential Display (Detail)

Differential Display (Detail)

Differential Display

Advantages of DD

- Oldest of all transcript expression methods
- Technically and technologically simplest of all transcript methods
- Does not require ESTs, cDNA libraries, or any prior knowledge of the genome
- Open-ended technology

Disadvantages of DD

- Not very quantitative
- Sensitivity can be an issue
- Only a fraction of the transcripts can be analyzed in any single reaction
- Prone to false positives
- Not easily automated or scaled-up

SAGE

- Principle is to convert eve into a short (10-14 base), ι Equivalent to reducing all city into a telephone book
- After creating the tags, the or concatenated into a lon
- The list can be read using and the list compared to a genes or proteins and thei

SAGE To

SAGE

SAGE

SAGE of Yeast Chromosome

Advantages of SAGE

- Very direct and quantitative method of measuring transcript abundance
- Open-ended technology
- Near infinite dynamic range
- Built-in quality control:
 - e.g. spacing of tags & 4-cutter restriction sites

Disadvantages of SAGE

- Expensive, time consuming technology - must sequence >50,000 tags per sample (>\$5,000 per sample)
- Most useful with fully sequenced genomes (otherwise difficult to associate 15 bp tags with their genes)
- 3' ends of some genes can be very polymorphic

RT-PCR

Principles of PCR

Polymerase Chain Reaction

PCR Tools

Thermocycler

Oligo Synthesizer

Reverse Transcriptase PCR

THE RT-PCR STEPS

- Two kinds of "RT-PCR" - confusing
- One uses reverse transcriptase (RT) to help produce cDNA from mRNA
- Other uses real time (RT) methods to monitor PCR amplification

RT-PCR

- RT (Real Time) PCR is a method to quantify mRNA and cDNA in real time
- A <u>quantitative PCR method</u>
- Measures the build up of fluorescence with each PCR cycle
- Generates quantitative fluorescence data at earliest phases of PCR cycle when replication fidelity is highest

RT-PCR (Taqman)

An oligo probe with 2 flurophores is used (a quencher & reporter)

RT-PCR vs. Microarray

Advantages of RT-PCR

- Sensitive assay, highly quantitative, highly reproducible
- Considered "gold standard" for mRNA quantitation
- Can detect as few as 5 molecules
- Excellent dynamic range, linear over several orders of magnitude

Disadvantages of RT-PCR

- Expensive (instruments are >\$150K, materials are also expensive)
- Not a high throughput system (10's to 100's of genes – not 1000's)
- Can pick up RNA carryover or contaminating RNA leading to false positives

Northern Blots

Northern Blots

- Method of measuring RNA abundance
- Name makes "fun" of Southern blots (which measure DNA abundance)
- mRNA is first separated on an agarose gel, then transferred to a nitrocellulose filter, then denatured and finally hybridized with ³²P labelled complementary DNA
- Intensity of band indicates abundance

Northern Blotting

The "Blot" Block

Advantages of Northerns

- Inexpensive, quantitative method of measuring transcript abundance
- Well used and well understood technology
- Use of radioactive probes makes it very sensitive
- Near infinite dynamic range

Disadvantages of Northerns

- Relies on radioactive labelling "dirty" technology
- Quality control issues
- "Old fashioned" technology, now largely replaced by microarrays and other technologies

Microarrays

Microarrays

- · Basic idea:
 - Reverse Northern blot on a huge scale
- The clever trick:
 - Miniaturize the technique, so that many assay can be carried out in parallel
 - Hybridize control and experimental samples simultaneously; use distinct fluorescent dyes to distinguish them

DNA Microarrays

- Principle is to analyze gene (mRNA) or protein expression through large scale non-radioactive Northern (RNA) hybridization analysis
- Essentially high throughput Northern Blotting method that uses Cy3 and Cy5 fluorescence for detection
- Allows expressional analysis of up to 20,000 genes simultaneously

Cy3 and Cy5 Dyes

Principles of Microarrays

Typical Microarray Data

Microarrays & Spot Colour

Four Types of Microarrays

- Photolithographically prepared short oligo (20-25 bp) arrays
- Spotted glass slide cDNA (500-1000 bp) arrays
- Spotted nylon cDNA (500-1000 bp) arrays
- Spotted glass slide oligo (70 bp) arrays

Affymetrix GeneChips

Glass Slide Microarrays

Advantages to Microarrays

- High throughput, quantitative method of measuring transcript abundance
- Avoids radioactivity (fluorescence)
- Kit systems and commercial suppliers make microarrays very easy to use
- Uses many "high-tech" techniques and devices – cutting edge
- Good dynamic range

Disadvantages to Microarrays

- Relatively expensive (>\$1000 per array for Affy chips, \$300 per array for "home made" systems)
- Quality and quality-control is highly variable
- Quantity of data often overwhelms most users
- Analysis and interpretation is difficult

Conclusions

- Multiple methods for measuring RNA or transcript abundance
 - Differential Display
 - Serial Analysis of Gene Expression (SAGE)
 - RT-PCR (real-time PCR)
 - Northern Blotting
 - DNA Microarrays or Gene Chips

Conclusions

- Some methods are better or, at least, more reliable than others
- Agreement between mRNA levels and protein levels is generally very poor – calls into question the utility of these measurements
- All mRNA measurement methods require a "second opinion"