Measuring Gene Expression # David Wishart Bioinformatics 301 david.wishart@ualberta.ca # **Looking at Genes** - Where? (where are genes located?) - Genes are located using gene finding programs (Glimmer, Genscan, GRPL) - What? (what do these genes do?) - Genes are characterized using gene annotation tools (Pedant, Magpie, etc.) - How Many? (how abundant are they?) - Gene expression is measured experimentally using SAGE or gene chips #### **Different Kinds of "Omes"** - Genome - Complement of all genes in a cell, tissue, organ or organism - Transcriptome - Complement of all mRNA transcripts in a cell, tissue, organ or organism - Proteome - Complement of all proteins in a cell, tissue, organ or organism #### **Different Kinds of "Omes"** # The Measurement Dichotomy # High Throughput Measurement #### -Omics Mania biome, CHOmics, cellome, cellomics, chronomics, clinomics, complexome, crystallomics, cytomics, cytoskeleton, degradomics, diagnomicsTM, enzymome, epigenome, expressome, fluxome, foldome, secretome, functome, functomics, genomics, glycomics, immunome, transcriptomics, integromics, interactome, kinome, ligandomics, lipoproteomics, localizome, phenomics, metabolome, pharmacometabonomics, methylome, microbiome, morphome, neurogenomics, nucleome, secretome, oncogenomics, operome, transcriptomics, ORFeome, parasitome, pathome, peptidome, pharmacogenome, pharmacomethylomics, phenomics, phylome, physiogenomics, postgenomics, predictome, promoterome, proteomics, pseudogenome, secretome, regulome, resistome, ribonome, ribonomics, riboproteomics, saccharomics, secretome, somatonome, systeome, toxicomics, transcriptome, translatome, secretome, unknome, vaccinome, variomics... http://www.genomicglossaries.com/content/omes.asp # Why Measure Gene Expression? - Assumption that more abundant genes/transcripts are more important - Assumption that gene expression levels correspond to protein levels - Assumption that a normal cell has a standard expression profile/signature - Changes to that expression profile indicate something is happening # Why Measure Gene Expression? - Gene expression profiles represent a snapshot of cellular metabolism or activity at the molecular scale - Gene expression profiles represent the cumulative interactions of many hard to detect events or phenomena - Gene expression is a "proxy" measure for transcription/translation events #### mRNA level = Protein level? - Gygi et al. (1999) Mol. Cell. Biol. compared protein levels (MS, gels) and RNA levels (SAGE) for 156 genes in yeast - In some genes, mRNA levels were essentially unchanged, but protein levels varied by up to 20X - In other genes, protein levels were essentially unchanged, but mRNA levels varied by up to 30X ### SAGE vs. 2D Gel ### mRNA level = Protein level? #### mRNA level = Protein level? - Griffen TJ et al. (2002) Mol. Cell. Proteomics 1:323-333 - Compared protein levels (MS, ICAT) and RNA levels (microarray) for 245 genes in yeast on galactose/ethanol medium - "Significant number of genes show large discrepancies between abundance ratios when measured at the levels of mRNA and protein expression" # Microarray vs. ICAT mRNA Protein #### mRNA vs. Protein levels #### mRNA vs. Protein levels # Why Do It? It's easier to do than the other measurements # How Relevant are RNA Levels to Protein Levels? # **Measuring Gene Expression** - Differential Display - Serial Analysis of Gene Expression (SAGE) - Rapid Analysis of Gene Expression (RAGE) - RT-PCR (real-time PCR) - Northern/Southern Blotting - DNA Microarrays or Gene Chips # **Differential Display (DD)** #### Basic idea: - Run two RNA (cDNA) samples side by side on a gel - Excise and sequence bands present in one lane, but not the other #### The clever trick: Reduce the complexity of the samples by making the cDNA with primers that will prime only a subset of all transcripts # **Differential Display** # **Differential Display (Detail)** # **Differential Display (Detail)** # **Differential Display** # **Advantages of DD** - Oldest of all transcript expression methods - Technically and technologically simplest of all transcript methods - Does not require ESTs, cDNA libraries, or any prior knowledge of the genome - Open-ended technology # Disadvantages of DD - Not very quantitative - Sensitivity can be an issue - Only a fraction of the transcripts can be analyzed in any single reaction - Prone to false positives - Not easily automated or scaled-up # **SAGE** - Principle is to convert eve into a short (10-14 base), ι Equivalent to reducing all city into a telephone book - After creating the tags, the or concatenated into a lon - The list can be read using and the list compared to a genes or proteins and thei # **SAGE To** #### SAGE ### SAGE #### **SAGE of Yeast Chromosome** # **Advantages of SAGE** - Very direct and quantitative method of measuring transcript abundance - Open-ended technology - Near infinite dynamic range - Built-in quality control: - e.g. spacing of tags & 4-cutter restriction sites # **Disadvantages of SAGE** - Expensive, time consuming technology - must sequence >50,000 tags per sample (>\$5,000 per sample) - Most useful with fully sequenced genomes (otherwise difficult to associate 15 bp tags with their genes) - 3' ends of some genes can be very polymorphic #### RT-PCR # **Principles of PCR** **Polymerase Chain Reaction** #### **PCR Tools** **Thermocycler** **Oligo Synthesizer** # **Reverse Transcriptase PCR** #### THE RT-PCR STEPS - Two kinds of "RT-PCR" - confusing - One uses reverse transcriptase (RT) to help produce cDNA from mRNA - Other uses real time (RT) methods to monitor PCR amplification #### RT-PCR - RT (Real Time) PCR is a method to quantify mRNA and cDNA in real time - A <u>quantitative PCR method</u> - Measures the build up of fluorescence with each PCR cycle - Generates quantitative fluorescence data at earliest phases of PCR cycle when replication fidelity is highest # **RT-PCR (Taqman)** # An oligo probe with 2 flurophores is used (a quencher & reporter) # **RT-PCR vs. Microarray** # **Advantages of RT-PCR** - Sensitive assay, highly quantitative, highly reproducible - Considered "gold standard" for mRNA quantitation - Can detect as few as 5 molecules - Excellent dynamic range, linear over several orders of magnitude # Disadvantages of RT-PCR - Expensive (instruments are >\$150K, materials are also expensive) - Not a high throughput system (10's to 100's of genes – not 1000's) - Can pick up RNA carryover or contaminating RNA leading to false positives #### **Northern Blots** #### **Northern Blots** - Method of measuring RNA abundance - Name makes "fun" of Southern blots (which measure DNA abundance) - mRNA is first separated on an agarose gel, then transferred to a nitrocellulose filter, then denatured and finally hybridized with ³²P labelled complementary DNA - Intensity of band indicates abundance # **Northern Blotting** #### The "Blot" Block # **Advantages of Northerns** - Inexpensive, quantitative method of measuring transcript abundance - Well used and well understood technology - Use of radioactive probes makes it very sensitive - Near infinite dynamic range # Disadvantages of Northerns - Relies on radioactive labelling "dirty" technology - Quality control issues - "Old fashioned" technology, now largely replaced by microarrays and other technologies # **Microarrays** # **Microarrays** - · Basic idea: - Reverse Northern blot on a huge scale - The clever trick: - Miniaturize the technique, so that many assay can be carried out in parallel - Hybridize control and experimental samples simultaneously; use distinct fluorescent dyes to distinguish them # **DNA Microarrays** - Principle is to analyze gene (mRNA) or protein expression through large scale non-radioactive Northern (RNA) hybridization analysis - Essentially high throughput Northern Blotting method that uses Cy3 and Cy5 fluorescence for detection - Allows expressional analysis of up to 20,000 genes simultaneously # Cy3 and Cy5 Dyes # **Principles of Microarrays** # **Typical Microarray Data** # **Microarrays & Spot Colour** # Four Types of Microarrays - Photolithographically prepared short oligo (20-25 bp) arrays - Spotted glass slide cDNA (500-1000 bp) arrays - Spotted nylon cDNA (500-1000 bp) arrays - Spotted glass slide oligo (70 bp) arrays # **Affymetrix GeneChips** # **Glass Slide Microarrays** # **Advantages to Microarrays** - High throughput, quantitative method of measuring transcript abundance - Avoids radioactivity (fluorescence) - Kit systems and commercial suppliers make microarrays very easy to use - Uses many "high-tech" techniques and devices – cutting edge - Good dynamic range # **Disadvantages to Microarrays** - Relatively expensive (>\$1000 per array for Affy chips, \$300 per array for "home made" systems) - Quality and quality-control is highly variable - Quantity of data often overwhelms most users - Analysis and interpretation is difficult #### **Conclusions** - Multiple methods for measuring RNA or transcript abundance - Differential Display - Serial Analysis of Gene Expression (SAGE) - RT-PCR (real-time PCR) - Northern Blotting - DNA Microarrays or Gene Chips #### **Conclusions** - Some methods are better or, at least, more reliable than others - Agreement between mRNA levels and protein levels is generally very poor – calls into question the utility of these measurements - All mRNA measurement methods require a "second opinion"