Measuring Gene Expression Part 2

David Wishart

Bioinformatics 301

david.wishart@ualberta.ca

Measuring Gene Expression

- Differential Display
- Serial Analysis of Gene Expression (SAGE)
- RT-PCR (real-time PCR)
- Northern/Southern Blotting
- DNA Microarrays or Gene Chips

Microarrays

DNA Microarrays

- Principle is to analyze gene (mRNA) or protein expression through large scale non-radioactive Northern (RNA) or Southern (DNA) hybridization analysis
- Essentially high throughput Northern Blotting method that uses Cy3 and Cy5 fluorescence for detection
- Allows expressional analysis of up to 20,000 genes simultaneously

Four Types of Microarrays

- Photolithographically prepared short oligo (20-25 bp) arrays (1 colour)
- Spotted glass slide cDNA (500-1000 bp) arrays (2 colour)
- Spotted nylon cDNA (500-1000 bp) arrays (1 colour/radioactive)
- Spotted glass slide oligo (30-70 bp) arrays (1 or 2 colour)

Principles of 2 Colour Microarrays

Microarray Definition of Probe and Target

- There are two acceptable and completely opposite definitions. We will use:
- Target = the DNA that is spotted on the array
- Probe = the DNA that is labeled with the fluorescent probe

Microarray Scanning

2-Colour Microarray Principles

Typical 2-Colour Data

Microarrays & Spot Colour

Principles of 1 Colour Microarrays

Microarrays & Spot Colour

Two Colour vs. One Colour

- Two-colour hybridization eliminates artifacts due to variation in:
 - quantity of DNA spotted
 - stringency of hybridization
 - local concentration of label
- However,
 - both samples *must* label with equivalent efficiency
 - Information is lost for genes not expressed in the reference or control sample

Two Colour vs. One Colour

- One-colour hybridization may have artifacts due to variation in:
 - quantity of DNA spotted
 - stringency of hybridization
 - local concentration of label
- However good quality control (QC) means,
 - fewer artifacts
 - less manipulation, lower cost
 - reduced loss of information (due to reference sample transcript content)

Specific Arrays of Interest

- Home-made Spotted Oligo Arrays
 - Made using glass slides, Operon oligos and robotic spotting equipment
- Amersham CodeLink Microarrays
 - Made using specially treated slides, QC'd oligos and robotic spotting equipment
- Affymetrix Gene Chips
 - Made using photolithographically produced systems with multi-copy oligos

Array Images

Array Images

Home-made Spotted Arrays

Spotted Microarrays

- Probes are >100µm and are usually deposited on glass
- Probes can be:
 - oligos (usually >40mers)
 - PCR fragments from cDNA/EST or genomic templates
- Not reused; 2-colour hybridizations

Standard Spotted Array

Home-made Microarrays

Common Home-made Microarray Errors

Testing Reproducibility

- Breast tumor tissue biopsy
- mRNA prepared using standard methods
- Control sample made from pooled mRNA from several cell types
- 3 RNA samples prepared from 1 tissue source – arrayed onto two sets of homemade chips from different suppliers
- Conducted pairwise comparison of intensity correlations & no. of spots

Home-made Arrays

Oligo Microarray 1

- 1) R=0.7 95%Cl=(0.68-0.72) N=2027
- 2) R=0.65 95%Cl=(0.62-0.67) N=2818
- 3) R=0.61 95%Cl=(0.59-0.64) N=2001

Home-made Arrays

Oligo Microarray 2

- 1) R=0.66 95%Cl=(0.62-0.69) N=1028
- 2) R=0.86 95%Cl=(0.85-0.87) N=1925
- 3) R=0.64 95%Cl=(0.61-0.68) N=1040

Advantages to Home-made Systems

- Cheapest method to produce arrays (\$100 to \$300/slide)
- Allows lab full control over design and printing of arrays (customizable)
- Allows quick adaptation to new technologies, new probe sets
- Allows more control over analysis

Disadvantages to Home-made Systems

- Quality and quality-control of oligo probe set is highly variable
- Quality of spotting and spot geometry is highly variable
- Technology is very advanced, difficult and expensive to maintain (robotics)
- Reproducibility is poor

Amersham CodeLink Arrays

Amersham CodeLink Arrays

- Amersham synthesizes its 30nucleotide oligos offline, tests them by mass spectrometry, deposits them on <u>specially coated</u> array, and then assays them for quality control
- Uses a special Flex Chamber[™]—a disposable hybridization chamber already attached to the slide to improve hybridization consistency

Amersham CodeLink Oligo Chip

CodeLink Special Coating

- Most glass substrates are quite hydrophobic
- This hydrophobicity affects the local binding and surface chemistry of most glass-slide chips making most of the attached DNA oligo inaccessible
- Coating the slide with a hydrophilic polymer allows the cDNA to pair up with the substrate oligos much better

Amersham Microarrays

Morphology Does Not Affect Dynamic Range CodeLink Bioarrays Can Achieve Linearity Across 3 Logs*

- The red line indicates the signal level for non-spiked target.
- Error bars represent one standard deviation for each mean (n=18) signal

Testing Reproducibility

- Breast tumor tissue biopsy
- mRNA prepared using standard methods
- 3 RNA samples prepared from 1 tissue source – arrayed onto 3 different sets of CodeLink chips
- Conducted pairwise comparison of intensity correlations, intensity ratio correlations & number of "passed" spots

Intensity, Pairwise Comparisons

Amersham Slides

1)	R=1	95%CI=(1-1)	N=8258
2)	R=0.99	95%Cl=(0.99-1)	N=8332
3)	R=0.99	95%Cl=(0.99-0.99)	N=8290

Ratio, Pairwise Comparisons

Amersham Slides

- 1) R=0.98 95%Cl=(0.98-0.98) N=7694
- 2) R=0.97 95%Cl=(0.97-0.98) N=7873
- 3) R=0.97 95%Cl=(0.97-0.97) N=7694

General Comparison

Amersham Intensity

1)	R=1	95%Cl=(1-1)	N=8258
2)	R=0.99	95%CI=(0.99-1)	N=8332
3)	R=0.99	95%Cl=(0.99-0.99)	N=8290

Amersham Ratio

1)	R=0.98	95%Cl=(0.98-0.98)	N=7694
		95%CI=(0.97-0.98)	
		95%Cl=(0.97-0.97)	

Vancouver

1)	R=0.7	95%Cl=(0.68-0.72)	N=2027
2)	R=0.65	95%Cl=(0.62-0.67)	N=2818
3)	R=0.61	95%Cl=(0.59-0.64)	N=2001

Calgary I

1)	R=0.66	95%Cl=(0.62-0.69)	N=1028
2)	R=0.86	95%CI=(0.85-0.87)	N=1925
3)	R=0.64	95%Cl=(0.61-0.68)	N=1040

Calgary II

1) R=0.49 95%Cl=(0.44-0.54) N=942 2) R=0.81 95%Cl=(0.8-0.83) N=1700 3) R=0.57 95%Cl=(0.52-0.61) N=973

Comparative Accuracy

	RT-PCR	Spotted Array	CodeLink
GENES	Expression Pattern TaqMan	Expression Pattern Operon	Expression Pattern Amersham
hENT1	+	-	+
hENT2	+	-	+
hCNT1	-	-	-
hCNT2	-	+	-
dck	+	-	+
ER	+	-	+

CodeLink Advantages

- Exceptional reproducibility because of:
 - careful probe design
 - QC of oligo preparations and spotting
 - high proportion of oligo binding to cDNA substrate due to hydrophilic coating
 - well controlled/uniform hybridization
- Allows users to continue using same scanners/software as in spotted arrays

CodeLink Disadvantages

- Lack of flexibility or customizability (users depend on Amersham to provide & design chips)
- Dependent on proprietary kits and reagents
- More expensive than spotted arrays (\$700/chip)

Cost per Sample in Triplicate

- Amersham Slides (single channel)
 - **\$2000**
- Vancouver Spotted Arrays (two colour)
 - \$800
- Calgary Spotted Arrays (two colour)
 - **\$1100**

Affymetrix Gene Chips

- Chips are 1.7 cm²
- 400,000 oligo probe pairs
- Probe "spots" are 20μ x
 20μ
- Each probe is 25 bases long
- 11-20 "match" probes and 11-20 "mismatch" probes per gene

Affymetrix Gene Chip

Wichord Dollar nic mater probe Affy Chip MacTologe A Water Drope , Α C C Т Т С C T T G G A A C C Т Т GG A A A A C C C C G G ТТ TT T T C C GG G G C C T T A G A C C G G A C A A G T A A C G C Т CC T T G G

Affy Chip

- 11-20 probes for each gene/EST
- Each probe is 25 bases long
- 1 has exact match, the other is mismatched in the middle base
- Match (M) and mismatch (MM) pairs are placed next to each other
- Expression levels calculated using intensity difference between M & MM for all probe pairs

Affymetrix Hybridization

Affy Chips

Affy Chips

Affy Chips

Comparison of Affymetrix and **Spotted cDNA Arrays**

161 620 matched pairs of measuréments from 56 cell lines

Affymetrix GeneChip Advantages

- High precision because of:
 - careful probe design
 - up to 20 probes per gene
 - up to 20 mismatch probes
- Very precise measurements
- Very high density (500,000 elements/array)

Affymetrix GeneChips Disadvantages

- Inflexible: each array requires custom photolithographic masks
- More expensive than spotted arrays (\$1000-\$1200 per chip)
- Proprietary technology
 - not all algorithms, information public
 - only one manufacturer of readers, etc.

General Comments

- Spotted arrays are still wildly popular and widely used – a great learning tool for expression analysis
- Spotted arrays are generally unreliable and provide only gross indications of RNA expression
- Commercial systems (CodeLink and Affy) offer much greater reliability but are expensive & inflexible

Microarray Production

- Probe design and selection
- Printing
- RNA extraction
- Labeling
- Hybridization and washing
- Scanning
- Data analysis

Probe Design & Selection

- Synthetic oligos 25-70 bases in length
- Choose sequences complementary to mRNA of interest
- Random base distribution and average GC content for organism
- Avoid long A+T or G+C rich regions
- Minimize internal secondary structure (hairpins or other loops)
- 1 M salt + 65 °C thermostability

Probe Design & Selection

- Design and select oligo sequences that are less than 75% identical to existing genes elsewhere in the genome (i.e. do a BLAST search)
- Sequences with >75% sequence identity to other sequences will cross-hybridize – leading to confounding results

Cross-hybridization

Analysis of a cross-hybridization within the CYP450 superfamily

Microarray Printing

Microarray Printing

- Probes are deposited by robots using:
 - piezo-electric jets
 - microcapillaries
 - split or solid pins
- Coated glass is the most common substrate
 - aminosilane, poly-lysine, etc. give non-covalent linkages
 - covalent linkage is possible with modified oligos + aldehyde (etc.) coatings

RNA Extraction

- RNA is extremely unstable
- Probably the most problematic step in all microarray analysis
- RNA is extracted as "total RNA"
 - only 1-2% is mRNA
 - remainder is rRNA, tRNA, etc.
- RNA extracted from tissue is often very heterogeneous (many cells and cell types) – watch selectivity

Laser Capture Microdissection

 Cells of interest are visually selected and exposed to an IR laser, which adheres them to a transfer film

RNA Labeling

- Common source of systematic error (freshness, contaminants)
- Direct labeling
 - fluorescent nucleotides are incorporated during reverse transcription ("first strand")
- Indirect labeling
 - reactive nucleotides (aminoallyl-dUTP) are incorporated during RT; first strand product is mixed with reactive fluorescent dyes that bind to amino group

Direct Labeling

Indirect Labeling

Hybridization

- Stringency of hybridization is affected by ions, detergents, formamide, temperature, time...
- Hybridization may be an important source of systematic error
- Automated hybridization systems exist; value is debatable

How Many Replicates?

Table 5. Misclassification percentages for different combinations of replicates

		Singlete	ons		Duplicate	es	3X			
Misclassified, %	8.7	1.4	9.0	1.4	2.4	0.7	0.7			
False negative, %	0.3	0.0	0.0	0.3	0.3	0.0	0.0			
False positive, %	8.3	1.4	9.0	1.0	2.1	0.7	0.7			
Outcome	(1)	(2)	(3)	(1, 2)	(1, 3)	(2, 3)	(1, 2, 3)			
Classification			Co	mbination o	f Replicates					

 Substantial error when only one array analyzed, standard is to use 3 replicates

What Types of Replicates?

Biological replication is most important because it includes all of the potential sources for error

Microarray Production

- Probe design and selection
- Printing
- RNA extraction
- Labeling
- Hybridization and washing
- Scanning
- Data analysis