Gene Structure \& Gene Finding
 David Wishart
 Rm. 3-41 Athabasca Hall david.wishart@ualberta.ca

Outline for Next 3 Weeks

- Genes and Gene Finding (Prokaryotes)
- Genes and Gene Finding (Eukaryotes)
- Genome and Proteome Annotation
- Fundamentals of Transcript Measurement
- Microarrays
- More Microarrays

DNA

the molecule of life
Trillions of cells
Each cell:

- 46 human chromosomes
- 2 m of DNA
- 3 billion DNA subunits (the bases: A, T, C, G)
- 30,000 genes code for proteins that perform all life functions

DNA Structure

B DNA

DNA - base pairing

- Hydrogen Bonds
- Base Stacking
- Hydrophobic Effect

Base-pairing (Details)

DNA Basepairs

Adenosine-Thymidine
(Adenine-Thymine)
2 H-bonds

Guanosine-Cytidine
(Guanine-Cytosine)
3 H-bonds

DNA Sequences

$$
5^{\prime} \quad 3^{\prime}
$$

Single: ATGCTATCTGTACTATATGATCTA

5' 3'
 Paired: ATGCTATCTGTACTATATGATCTA TACGATAGACATGATATACTAGAT

```
Read this way----->
```

5' 3'
ATGATCGATAGACTGATCGATCGATCGATTAGATCC
TACTAGCTATCTGACTAGCTAGCTAGCTAATCTAGG
3' 5'
<---Read this way

DNA Sequence Nomenclature

Reverse: TAGATCATATAGTACAGAGATCAT Complement

The Fundamental Paradigm

RNA Polymerase

Forward: ATGCTATCTGTACTATATGATCTA Complement: TACGATAGACATGATATACTAGAT

Forward:

${ }^{A} \mathbf{U}_{\mathbf{G}}$

${ }^{G} C_{U_{A}}$

The Genetic Code

The Genetic Code

Translating DNA/RNA

Frame3
Frame2

DNA Sequencing

Shotgun Sequencing

Principles of DNA Sequencing

Denature with
heat to produce
ssDNA

Primer

The Secret to Sanger Sequencing

- Structure of the dideoxynucleotide

- structure of a ddNTP

Principles of DNA Sequencing

Principles of DNA Sequencing

Capillary Electrophoresis

Separation by Electro-osmotic Flow

Multiplexed Fluorescent

ABI 3700

Shotgun Sequencing

Sequence
Chromatogram

Send to Computer

CIIIIIIT IIIIIMIIIIIID
Assembled
Sequence

Shotgun Sequencing

- Very efficient process for small-scale ($\sim 10 \mathrm{~kb}$) sequencing (preferred method)
- First applied to whole genome sequencing in 1995 (H. influenzae)
- Now standard for all prokaryotic genome sequencing projects
- Successfully applied to D. melanogaster
- Moderately successful for H. sapiens

The Finished Product

GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA TTACAGATTACAGATTACAGATTACAGATTACAGAT TACAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATTAC AGATTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA TTACAGATTACAGATTACAGATTACAGATTACAGAT

Sequencing Successes

T7 bacteriophage completed in 1983 39,937 bp, 59 coded proteins

Escherichia coli
completed in 1998
4,639,221 bp, 4293 ORFs
Sacchoromyces cerevisae completed in 1996
12,069,252 bp, 5800 genes

Sequencing Successes

Caenorhabditis elegans completed in 1998
95,078,296 bp, 19,099 genes
Drosophila melanogaster completed in 2000
116,117,226 bp, 13,601 genes
Homo sapiens
completed in 2003
3,201,762,515 bp, 31,780 genes

Genomes to Date

- 5 vertebrates (human, mouse, rat, fugu, zebrafish)
- 2 plants (arabadopsis, rice)
- 2 insects (fruit fly, mosquito)
- 2 nematodes (C. elegans, C. briggsae)
- 1 sea squirt
- 4 parasites (plasmodium, guillardia)
- 4 fungi (S. cerevisae, S. pombe)
- 140 bacteria and archebacteria
- 1000+ viruses

Gene Finding in Prokaryotes

Prokaryotes

- Simple gene structure
- Small genomes (0.5 to 10 million bp)
- No introns (uninterrupted)
- Genes are called Open Reading Frames of "ORFs" (include start \& stop codon)
- High coding density (>90\%)
- Some genes overlap (nested)
- Some genes are quite short (<60 bp)

Prokaryotic Gene Structure

Frame 3 \qquad لـ \qquad
\qquad
\qquad
 \qquad
\qquad

Gene Finding In Prokaryotes

- Scan forward strand until a start codon is found
- Staying in same frame scan in groups of three until a stop codon is found
- If \# of codons between start and end is greater than 50, identify as gene and go to last start codon and proceed with step 1
- If \# codons between start and end is less than 50, go back to last start codon and go to step 1
- At end of chromosome, repeat process for reverse complement

ORF Finding Tools

- http://wwww.ncbi.nlm.nih.gov/gorf/gorf.h tml
- http://alfa.ist.utl.pt/~pedromc/SMS/orf_fi nd.html
- http://www.cbc.umn.edu/diogenes/diog enes.html
- http://www.nih.go.jp/~jun/cgibin/frameplot.pl

NCBI ORF Finder

But...

- Prokaryotic genes are not always so simple to find
- When applied to whole genomes, simple ORF finding programs tend to overlook small genes and tend to overpredict the number of long genes
- Can we include other genome signals?
- Can we account for alternative signals?

Key Prokaryotic Gene Signals

- Alternate start codons
- RNA polymerase promoter site (-10, -35 site or TATA box)
- Shine-Dalgarno sequence (Ribosome binding site-RBS)
- Stem-loop (rho-independent) terminators
- High GC content (CpG islands)

Alternate Start Codons (E. coli)

Class I	ATG	Met
	GTG	Val
	TTG	Leu
Class Ila	CTG	Met
	ATT	Val
	ATA	Leu
	ACG	Thr

-10, -35 Site (RNA pol Promoter)
 $\begin{array}{cccccccccccc}-36 & -35 & -34 & -33 & -32 & \cdots . & -13 & -12 & -11 & -10 & -9 & -8 \\ \text { T } & \text { T } & \text { G } & \text { A } & \text { C } & & \text { T } & \text { A } & \text { t } & \text { A } & \text { A } & \text { T }\end{array}$

RBS (Shine Dalgarno Seq)
$\begin{array}{ccccccccccccc}-13 & -12 & -11 & -10 & -9 & -8 & \cdots & -1 & 0 & 1 & 2 & 3 & 4 \\ \text { G } & & \text { n } & \text { A } & \text { T } & \text { G } & \text { n } & \text { C }\end{array}$

Terminator Stem-loops

rho-independent terminator

Simple Methods to Gene Site Identification

- Use a consensus

A PSSM sequence (CNNTGA)

- Use a regular expression (C[TG]A*)
- Use a custom scoring matrix called a position specific scoring matrix (PSSM) built from multiple sequence alignments

Building a PSSM - Step 1

ATTTAGTATC GTTCTGTAAC

Multiple
ATTTTGTAGC
Alignment
AAGCTGTAAC CATTTGTACA

$$
\begin{array}{llllllllllll}
\text { A } & 3 & 2 & 0 & 0 & 1 & 0 & 0 & 5 & 2 & 1 & \\
\text { C } & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 4 & \text { Table of } \\
\text { G } & 1 & 0 & 1 & 0 & 0 & 5 & 0 & 0 & 1 & 0 & \text { Occurrences }
\end{array}
$$

Building a PSSM - Step 2

$$
\begin{array}{llllllllllll}
\mathrm{A} & 3 & 2 & 0 & 0 & 1 & 0 & 0 & 5 & 2 & 1 & \\
\mathrm{C} & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 4 & \text { Table of } \\
\mathrm{G} & 1 & 0 & 1 & 0 & 0 & 5 & 0 & 0 & 1 & 0 & \text { Occurrences } \\
\mathrm{T} & 0 & 3 & 4 & 3 & 4 & 0 & 5 & 0 & 1 & 0 &
\end{array}
$$

$$
\begin{array}{rrrrrrrrrrrr}
\text { A } & .6 & .4 & 0 & 0 & .2 & 0 & 0 & 1 & .4 & .2 & \\
\mathrm{C} & .2 & 0 & 0 & .4 & 0 & 0 & 0 & 0 & .2 & .8 & \text { PSSM with no } \\
\mathrm{G} & .2 & 0 & .2 & 0 & 0 & 1 & 0 & 0 & .2 & 0 & \text { pseudocounts } \\
\mathrm{T} & 0 & .6 & .8 & .6 & .8 & 0 & 1 & 0 & .2 & 0 &
\end{array}
$$

Pseudocounts

- Method to account for small sample size of multi-sequence alignment
- Gets around problem of having " 0 " score in PSSM or profile
- Defined by a correction factor "B" which reflects overall composition of sequences under consideration
- $B=\sqrt{ } N$ or $B=0.1$ which falls off with N where $\mathbf{N}=$ \# sequences

Pseudocounts

- $\operatorname{Score}\left(X_{i}\right)=\left(q_{x}+p_{x}\right) /(N+B)$
- $q=$ observed counts of residue X at pos. i
- $p=p s e u d o c o u n t s$ of $X=B * f r e q u e n c y(X)$
- $\mathbf{N}=$ total number of sequences in MSA
- $B=$ number of pseudocounts (assume $\sqrt{ } \mathrm{N}$)

$$
\operatorname{Score}\left(A_{1}\right)=(3+\sqrt{5}(0.32) /(5+\sqrt{5})=0.51
$$

Including Pseudocounts -

 Step 2

A . 51 . 38 . 09.09. 24 . 09 . 09 . 79 . 38 . 24
C . 19 . 06.06. 33.06.06.06.06.19.61
PSSM with
G .19.06.19.06.06.75.06.06.19.06 pseudocounts
т . 09 . 51 . 65.51.65.09.79.09.24 .09

Calculating Log-odds - Step 3

G . 19.06.19.06 .06 .75 .06 .06 .19 .06 pseudocounts
т . 09 . 51 . 65.51.65 .09.79 .09.24.09
$\sqrt{\xi}-\log _{10}$

$$
\begin{array}{cccccccccccc}
\text { A } & 0.2 & 0.4 & 1.1 & 1.1 & 0.7 & 1.1 & 1.1 & 0.1 & 0.4 & 0.7 & \\
\text { C } & 0.7 & 1.2 & 1.2 & 0.4 & 1.2 & 1.2 & 1.2 & 1.2 & 0.7 & 0.1 & \text { Log-odds } \\
\text { G } & 0.7 & 1.2 & 0.7 & 1.2 & 1.2 & 0.1 & 1.2 & 1.2 & 0.7 & 1.2 & \text { PSSM } \\
\text { T } & 1.1 & 0.2 & 0.1 & 0.2 & 0.1 & 1.1 & 0.1 & 1.1 & 0.7 & 1.1 &
\end{array}
$$

Scoring a Sequence - Step 4

$$
\begin{array}{cccccccccccc}
\text { A } & 0.2 & 0.4 & 1.1 & 1.1 & 0.7 & 1.1 & 1.1 & 0.1 & 0.4 & 0.7 & \\
\text { C } & 0.7 & 1.2 & 1.2 & 0.4 & 1.2 & 1.2 & 1.2 & 1.2 & 0.7 & 0.1 & \text { Log-odds } \\
\text { G } & 0.7 & 1.2 & 0.7 & 1.2 & 1.2 & 0.1 & 1.2 & 1.2 & 0.7 & 1.2 & \text { PSSM } \\
\text { T } & 1.1 & 0.2 & 0.1 & 0.2 & 0.1 & 1.1 & 0.1 & 1.1 & 0.7 & 1.1 &
\end{array}
$$

ATTTAGTATC
Score $=2.5$
(Lowest score wins)

$$
\begin{array}{llllllllllllll}
\text { A } & 0.2 & 0.4 & 1.1 & 1.1 & 0.7 & 1.1 & 1.1 & 0.1 & 0.4 & 0.7 \\
\text { C } & 0.7 & 1.2 & 1.2 & 0.4 & 1.2 & 1.2 & 1.2 & 1.2 & 0.7 & 0.1 \\
\text { G } & 0.7 & 1.2 & 0.7 & 1.2 & 1.2 & 0.1 & 1.2 & 1.2 & 0.7 & 1.2 \\
\text { T } & 1.1 & 0.2 & 0.1 & 0.2 & 0.1 & 1.1 & 0.1 & 1.1 & 0.7 & 1.1
\end{array}
$$

More Sophisticated Methods

More Sophisticated Methods

- GLIMMER
- http://www.tigr.org/software/glimmer/
- Uses interpolated markov models (IMM)
- Requires training of sample genes
- Takes about 1 minute/genome
- GeneMark.hmm
- http://opal.biology.gatech.edu/GeneMark/gmhmm2_prok.cgi
- Available as a web server
- Uses hidden markov models (HMM)

Glimmer Performance

Glinnmer 2.0's Accuracy

Organism	Genes annotated	Annotated genes found	\% found
H. influenzae	1738	1720	99.0
M. genitalium	483	480	99.4
M. jannaschii	1727	1721	99.7
H. pylori	1590	1550	97.5
E. coli	4269	4158	97.4
B. subtilis	4100	4030	98.3
A. fulgidis	2437	2404	98.6
B. burgdorferi	853	843	99.3
T. pallidum	1039	1014	97.6
T. maritima	1877	1854	98.8

Genemark.hmm

Sequence Text: ©

Hidden Markov Models

- Markov Model is a chain of events or states
- Each state has a set of emission probabilities for occupying that state
- MSA creates a Markov model of emission and transition probabilities
- Typically have a "Topology" which assumes a sequence of events is a multiplicative product of individual probabilities (independent, 1st order)

Hidden Markov Topology

Hidden Markov Models

States -- well defined conditions
Edges -- transitions between the states

ATGAC
ATTAC
ACGAC
ACTAC

Each transition is assigned a probability.
Probability of the sequence:
single path with the highest probability --- Viterbi path sum of the probabilities over all paths -- Baum-Welch method

Making a Markov Model

ACA-- - ATG
TCAACTATC
ACAC--AGC
A G A - - - ATC
ACCG--ATC

[AT] [CG] [AC] [ACGT-] (3)A[TG][GC]
 ~3600 possible valid sequences

Making a Markov Model

$$
\begin{aligned}
& \Delta=.4 \quad \Delta=.6 \quad \Delta=.6 \\
& \mathrm{p}(\mathrm{C})=.8 \quad \mathrm{p}(\mathrm{~A})=.2 \mathrm{p}(\mathrm{C})=.4 \\
& \mathrm{p}(\mathrm{~T})=.8 \\
& \mathrm{p}(\mathrm{G})=.2 \\
& \begin{array}{llllllll}
\mathbf{A} & \mathbf{A} & - & - & \mathbf{A}
\end{array} \\
& \text { G } \\
& \begin{array}{lllllllll}
\mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{A} & \mathbf{C} & \mathbf{T} & \mathbf{A} & \mathbf{T} & \mathbf{C}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A} \mathbf{G} \quad \mathbf{A} \quad-\quad-\quad-\quad \mathbf{A} \quad \mathbf{T} \quad \mathbf{C} \\
& \begin{array}{lllllllll}
\mathbf{A} & \mathbf{C} & \mathbf{C} & \mathbf{G} & - & - & \mathbf{A} & \mathbf{T} & \mathbf{C}
\end{array} \\
& \begin{array}{llll}
\mathrm{p}(\mathrm{~A})=.8 & \mathrm{p}(\mathrm{~A})=.8 & \mathrm{p}(\mathrm{~A})=1 & \mathrm{p}(\mathrm{C})=.8 \\
\mathrm{p}(\mathrm{~T})=.2 & \mathrm{p}(\mathrm{C})=.2 & & \mathrm{p}(\mathrm{G})=.2
\end{array}
\end{aligned}
$$

Making a Markov Model

Log-Odds (LOD)

Def'n - LOD is the logarithm of the probability of an event divided by the probability of a null model

For DNA: LOD(S) $=\log \frac{P(S)}{0.25^{\mathrm{L}}}=\log \mathrm{P}(S)-L \log 0.25$
For protein: $\operatorname{LOD}(S)=\log \frac{P(S)}{0.05^{\text {L }}}=\log P(S)-L \log 0.05$

$$
S=\text { sequence, } L \text { = length }
$$

Making a LOD Markov Model

LOD(ACAC--ATC) $=1.16+0+1.16+0+1.16-0.51+$ $0.5-0.51+1.39+0+1.16+0+1.16=6.64$

Other Sequences...

- $P(A C A---A T G)=0.0033 \quad(L O D=4.9)$
- $P($ TCAACTATC $)=0.000075 \quad(L O D=3.0)$
- $P(A C A C--A G C)=0.0012$ (LOD =5.3)
- $P(A G A---A T C)=0.0033(L O D=4.9)$
- $P(A C C G--A T C)=0.00059$ (LOD $=4.6)$
- $P(T G C T--A G G)=0.000023(L O D=-0.97)$ worst
- $P(A C A C--A T G)=0.0047$ (LOD = 6.7)

HMM Issues

- How to find the "optimal sequence" or score a new sequence?
- Answer: Use Dynamic Programming (called the Viterbi algorithm) to find the optimal path
- How to deal with sparse data?
- Answer: Use Pseudocounts (i.e. add fake data that reflects natural substitution patterns or known frequencies)

HMM's in Gene Prediction

- Can be used to make a 1st order position specific profile or weight matrix for splice sites, start sites or coding regions
- Mostly used in creating "higher order" Markov Models where dinucleotide (2nd order), trinucleotide (3rd order) or pentanucleotide (5th order) probabilities are used to recognize coding regions

HMM Order \& Conditional Probability

Order

1st

$$
P(A C T G T C)=p(A) \times p(C) \times p(T) \times p(G) \times p(T) \ldots
$$

2nd

$$
P(A C T G T C)=p(A) \times p(C \mid A) \times p(T \mid C) \times p(G \mid T) \ldots
$$

3rd

$$
P(A C T G C G)=p(A) \times p(C \mid A) \times p(T \mid A C) \times p(G \mid C T) \ldots
$$

$$
P(T \mid A C)=\#(A C T) / \# A C T+\# A C A+\# A C G+\# A C C
$$

Probability of T given $A C$

Bottom Line...

- Gene finding in prokaryotes is now a "solved" problem
- Accuracy of the best methods approaches 99\%
- Gene predictions should always be compared against a BLAST search to ensure accuracy and to catch possible sequencing errors

