Gene Structure & Gene Finding Part II

David Wishart david.wishart@ualberta.ca

Gene Finding in Eukaryotes

Eukaryotes

- Complex gene structure
- Large genomes (0.1 to 10 billion bp)
- Exons and Introns (interrupted)
- Low coding density (<30%)
 - 3% in humans, 25% in Fugu, 60% in yeast
- Alternate splicing (40-60% of all genes)
- High abundance of repeat sequence (50% in humans) and pseudo genes
- Nested genes: overlapping on same or opposite strand or inside an intron

Eukaryotic Gene Structure

Eukaryotic Gene Structure

RNA Splicing

Exon/Intron Structure (Detail)

ATGCTGTTAGATCGATTGAC

Intron Phase

A codon can be interrupted by an intron in one of three places

Phase 0: ATGATTGTCAG...CAGTAC

Phase 1: ATGATGTCAG...CAGTTAC

Phase 2: ATGAGTCAG...CAGTTTAC

Repetitive DNA

- Moderately Repetitive DNA
 - Tandem gene families (250 copies of rRNA, 500-1000 tRNA gene copies)
 - Pseudogenes (dead genes)
 - Short interspersed elements (SINEs)
 - 200-300 bp long, 100,000+ copies, scattered
 - Alu repeats are good examples
 - Long interspersed elements (LINEs)
 - 1000-5000 bp long
 - 10 10,000 copies per genome

Repetitive DNA

- Highly Repetitive DNA
 - Minisatellite DNA
 - repeats of 14-500 bp stretching for ~2 kb
 - many different types scattered thru genome
 - Microsatellite DNA
 - repeats of 5-13 bp stretching for 100's of kb
 - mostly found around centromere
 - Telomeres
 - highly conserved 6 bp repeat (TTAGGG)
 - 250-1000 repeats at end of each chromosome

Key Eukaryotic Gene Signals

- Pol II RNA promoter elements
 - Cap and CCAAT region
 - GC and TATA region
- Kozak sequence (Ribosome binding site-RBS)
- Splice donor, acceptor and lariat signals
- Termination signal
- Polyadenylation signal

Pol II Promoter Elements

Pol II Promoter Elements

- Cap Region/Signal
 - -nCAGTnG
- TATA box (~ 25 bp upstream)
 - -TATAAAnGCCC
- CCAAT box (~100 bp upstream)
 - -TAGCCAATG
- GC box (~200 bp upstream)
 - ATAGGCGnGA

Pol II Promoter Elements

TATA box is found in ~70% of promoters

http://www.bio.cam.ac.uk/cgi-bin/seqlogo/logo.cgi

Kozak (RBS) Sequence

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 A G C C A C C A T G G

Splice Signals

Splice Sites

- Not all splice sites are real
- ~0.5% of splice sites are non-canonical (i.e. the intron is not GT...AG)
- It is estimated that 5%of human genes may have non-canonical splice sites
- ~50% of higher eukaryotes are alternately spliced (different exons are brought together)

Miscellaneous Signals

- Polyadenylation signal
 - -AATAAA or ATTAAA
 - Located 20 bp upstream of poly-A cleavage site
- Termination Signal
 - -AGTGTTCA
 - Located ~30 bp downstream of poly-A cleavage site

Polyadenylation

Why Polyadenylation is Really Useful

Complementary Base Pairing

mRNA isolation

- Cell or tissue sample is ground up and lysed with chemicals to release mRNA
- Oligo(dT) beads are added and incubated with mixture to allow A-T annealing
- Pull down beads with magnet and pull off mRNA

Making cDNA from mRNA

- cDNA (i.e. complementary DNA) is a single-stranded DNA segment whose sequence is complementary to that of messenger RNA (mRNA)
- Synthesized by reverse transcriptase

Reverse Transcriptase

Finding Eukaryotic Genes Experimentally

Convert the spliced mRNA into cDNA

- Only expressed genes or expressed sequence tags (EST's) are seen
- Saves on sequencing effort (97%)

Finding Eukaryotic Genes Computationally

- Content-based Methods
 - GC content, hexamer repeats, composition statistics, codon frequencies
- Site-based Methods
 - donor sites, acceptor sites, promoter sites, start/stop codons, polyA signals, lengths
- Comparative Methods
 - sequence homology, EST searches
- Combined Methods

Content-Based Methods

- CpG islands
 - High GC content in 5' ends of genes
- Codon Bias
 - Some codons are strongly preferred in coding regions, others are not
- Positional Bias
 - 3rd base tends to be G/C rich in coding regions
- Ficketts Method
 - looks for unequal base composition in different clusters of i, i+3, i+6 bases - TestCode graph

TestCode Plot

Comparative Methods

- Do a BLASTX search of all 6 reading frames against known proteins in GenBank
- Assumes that the organism under study has genes that are homologous to known genes (used to be a problem, in 2001 analysis of chr. 22 only 50% of genes were similar to known proteins)
- BLAST against EST database (finds possible or probable 3' end of cDNAs)

BLASTX

Site-Based Methods

- Based on identifying gene signals (promoter elements, splice sites, start/stop codons, polyA sites, etc.)
- Wide range of methods
 - consensus sequences
 - weight matrices
 - neural networks
 - decision trees
 - hidden markov models (HMMs)

Neural Networks

- Automated method for classification or pattern recognition
- First described in detail in 1986
- Mimic the way the brain works
- Use Matrix Algebra in calculations
- Require "training" on validated data
- Garbage in = Garbage out

Neural Networks

Neural Network Applications

- Used in Intron/Exon Finding
- Used in Secondary Structure Prediction
- Used in Membrane Helix Prediction
- Used in Phosphorylation Site Prediction
- Used in Glycosylation Site Prediction
- Used in Splice Site Prediction
- Used in Signal Peptide Recognition

Neural Network

Neural Network Training

Back Propagation

Calculate New Output

[010100001]
$$\begin{bmatrix} .1 & .1 & .1 \\ .2 & .0 & .4 \\ .7 & .1 & .1 \\ .0 & .1 & .1 \\ .0 & .0 & .0 \\ .2 & .2 & .1 \\ .0 & .3 & .5 \\ .1 & .3 & .0 \\ .5 & .3 & .3 \end{bmatrix} [.7 & .4 & .7] \begin{bmatrix} .02 & .83 \\ .00 & .23 \\ .22 & .33 \end{bmatrix} [.16 & .91]$$
Converged!

Input
Vector
Weight
Hidden Weight
Vector
Matrix1 Layer Matrix2 Vector

Train on Second Input Vector

Back Propagation

After Many Iterations....

Two "Generalized" Weight Matrices

Neural Networks

Input Layer 1 Hidden Output Layer

HMM for Gene Finding

Combined Methods

- Bring 2 or more methods together (usually site detection + composition)
- GRAIL (http://compbio.ornl.gov/Grail-1.3/)
- FGENEH (http://genomic.sanger.ac.uk/gf/gf.shtml)
- HMMgene (http://www.cbs.dtu.dk/services/HMMgene/)
- **GENSCAN**(http://genes.mit.edu/GENSCAN.html)
- Gene Parser (http://beagle.colorado.edu/~eesnyder/GeneParser.html)
- GRPL (GeneTool/BioTools)

Genscan

How Do They Work?

GENSCAN

- 5th order Hidden Markov Model
- Hexamer composition statistics of exons vs. introns
- Exon/intron length distributions
- Scan of promoter and polyA signals
- Weight matrices of 5' splice signals and start codon region (12 bp)
- Uses dynamic programming to optimize gene model using above data

How Well Do They Do?

Burset & Guigio test set (1996)

How Well Do They Do?

Programs	# of seq	Nucleotide accu			racy			E	Exon accuracy						
		Sn	Sp	AC	CC	ESn	ESp	Œ	n+ESp	V2	ME	WE	PCa	РСр	OL
FGENES	195(5)	0.86	0.88	0.84	0.83	0.67	0.67		0.69		0.12	0.09	0.20	0.17	0.02
GeneMark	195(0)	0.87	0.89	0.84	0.83	0.53	0.54		0.54		0.13	0.11	0.29	0.27	0.09
Genie	195(15)	0.91	0.90	0.89	0.88	0.71	0.70		0.71		0.19	0.11	0.15	0.15	0.02
Genscan	195(3)	0.95	0.90	0.91	0.91	0.70	0.70		0.71		0.08	0.09	0.21	0.19	0.02
HMMgene	195(5)	0.93	0.93	0.91	0.91	0.76	0.77		0.76		0.12	0.07	0.14	0.14	0.02
Morgan	127(0)	0.75	0.74	0.70	0.69	0.46	0.41		0.43		0.20	0.28	0.28	0.25	0.07
MZEF	119(8)	0.70	0.73	0.68	0.66	0.58	0.59		0.59		0.32	0.23	0.08	0.16	0.01

"Evaluation of gene finding programs" S. Rogic, A. K. Mackworth and B. F. F. Ouellette. Genome Research, 11: 817-832 (2001).

Easy vs. Hard Predictions

3 equally abundant states (easy)
BUT random prediction = 33% correct

Rare events, unequal distribution (hard)

BUT "biased" random prediction = 90% correct

Gene Prediction (Evaluation)

Sensitivity Measure of the % of false negative results (sn =

0.996 means 0.4% false negatives)

Specificity Measure of the % of false positive results

Precision Measure of the % positive results

Correlation Combined measure of sensitivity and specificity

Gene Prediction (Evaluation)

Sensitivity or Recall Sn=TP/(TP+FN)

Specificity Sp=TN/(TN+FP)

Precision Pr=TP/(TP+FP)

Correlation

CC=(TP*TN-FP*FN)/[(TP+FP)(TN+FN)(TP+FN)(TN+FP)]^{0.5}
This is a better way of evaluating

Different Strokes for Different Folks

- Precision and specificity statistics favor conservative predictors that make no prediction when there is doubt about the correctness of a prediction, while the sensitivity (recall) statistic favors liberal predictors that make a prediction if there is a chance of success.
- Information retrieval papers report precision and recall, while bioinformaticspapers tend to report specificity and sensitivity.

Gene Prediction Accuracy at the Exon Level

Better Approaches Are Emerging...

- Programs that combine site, comparative and composition (3 in 1)
 - GenomeScan, FGENESH++, Twinscan
- Programs that use synteny between organisms
 - ROSETTA, SLAM, SGP
- Programs that combine predictions from multiple predictors
 - GeneComber, DIGIT

GenomeScan - http://genes.mit.edu/genomescan.html

TwinScan - http://genes.cs.wustl.edu/

SLAM -

http://baboon.math.berkeley.edu/~syntenic/slam.html

GeneComber -

http://www.bioinformatics.ubc.ca/genecomber/submit.php

Outstanding Issues

- Most Gene finders don't handle UTRs (untranslated regions)
- ~40% of human genes have non-coding 1st exons (UTRs)
- Most gene finders don't' handle alternative splicing
- Most gene finders don't handle overlapping or nested genes
- Most can't find non-protein genes (tRNAs)

Bottom Line...

- Gene finding in eukaryotes is not yet a "solved" problem
- Accuracy of the best methods approaches 80% at the exon level (90% at the nucleotide level) in coding-rich regions (much lower for whole genomes)
- Gene predictions should always be verified by other means (cDNA sequencing, BLAST search, Mass spec.)